Cargando…
YOLOv4 with Deformable-Embedding-Transformer Feature Extractor for Exact Object Detection in Aerial Imagery
The deep learning method for natural-image object detection tasks has made tremendous progress in recent decades. However, due to multiscale targets, complex backgrounds, and high-scale small targets, methods from the field of natural images frequently fail to produce satisfactory results when appli...
Autores principales: | Wu, Yiheng, Li, Jianjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007093/ https://www.ncbi.nlm.nih.gov/pubmed/36904727 http://dx.doi.org/10.3390/s23052522 |
Ejemplares similares
-
Lightweight aerial image object detection algorithm based on improved YOLOv5s
por: Deng, Lixia, et al.
Publicado: (2023) -
Lightweight Object Detection Algorithm for UAV Aerial Imagery
por: Wang, Jian, et al.
Publicado: (2023) -
UAV-YOLOv8: A Small-Object-Detection Model Based on Improved YOLOv8 for UAV Aerial Photography Scenarios
por: Wang, Gang, et al.
Publicado: (2023) -
YOLOv5 with ConvMixer Prediction Heads for Precise Object Detection in Drone Imagery
por: Baidya, Ranjai, et al.
Publicado: (2022) -
YOLOv5s-DSD: An Improved Aerial Image Detection Algorithm Based on YOLOv5s
por: Sun, Chaoyue, et al.
Publicado: (2023)