Cargando…
Multimodal Sentiment Analysis Representations Learning via Contrastive Learning with Condense Attention Fusion
Multimodal sentiment analysis has gained popularity as a research field for its ability to predict users’ emotional tendencies more comprehensively. The data fusion module is a critical component of multimodal sentiment analysis, as it allows for integrating information from multiple modalities. How...
Autores principales: | Wang, Huiru, Li, Xiuhong, Ren, Zenyu, Wang, Min, Ma, Chunming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007095/ https://www.ncbi.nlm.nih.gov/pubmed/36904883 http://dx.doi.org/10.3390/s23052679 |
Ejemplares similares
-
Multi-Modal Representation via Contrastive Learning with Attention Bottleneck Fusion and Attentive Statistics Features
por: Guo, Qinglang, et al.
Publicado: (2023) -
Dynamic Invariant-Specific Representation Fusion Network for Multimodal Sentiment Analysis
por: He, Jing, et al.
Publicado: (2022) -
Hierarchical Fusion Network with Enhanced Knowledge and Contrastive Learning for Multimodal Aspect-Based Sentiment Analysis on Social Media
por: Hu, Xiaoran, et al.
Publicado: (2023) -
Fusion-Extraction Network for Multimodal Sentiment Analysis
por: Jiang, Tao, et al.
Publicado: (2020) -
Machine Learning of Reaction Properties via Learned
Representations of the Condensed Graph of Reaction
por: Heid, Esther, et al.
Publicado: (2021)