Cargando…
Privacy-Preserving Decision-Tree Evaluation with Low Complexity for Communication
Due to the rapid development of machine-learning technology, companies can build complex models to provide prediction or classification services for customers without resources. A large number of related solutions exist to protect the privacy of models and user data. However, these efforts require c...
Autores principales: | Hao, Yidi, Qin, Baodong, Sun, Yitian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007117/ https://www.ncbi.nlm.nih.gov/pubmed/36904825 http://dx.doi.org/10.3390/s23052624 |
Ejemplares similares
-
PPSDT: A Novel Privacy-Preserving Single Decision Tree Algorithm for Clinical Decision-Support Systems Using IoT Devices
por: Alabdulkarim, Alia, et al.
Publicado: (2019) -
PPCD: Privacy-preserving clinical decision with cloud support
por: Ma, Hui, et al.
Publicado: (2019) -
Secure and privacy-preserving data communication in Internet of Things
por: Zhu, Liehuang, et al.
Publicado: (2017) -
High quality linkage using Multibit Trees for privacy-preserving blocking
por: Brown, Adrian, et al.
Publicado: (2017) -
Communication-Efficient and Privacy-Preserving Verifiable Aggregation for Federated Learning
por: Peng, Kaixin, et al.
Publicado: (2023)