Cargando…
Leveraging Active Learning for Failure Mode Acquisition
Identifying failure modes is an important task to improve the design and reliability of a product and can also serve as a key input in sensor selection for predictive maintenance. Failure mode acquisition typically relies on experts or simulations which require significant computing resources. With...
Autores principales: | Kulkarni, Amol, Terpenny, Janis, Prabhu, Vittaldas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007120/ https://www.ncbi.nlm.nih.gov/pubmed/36905023 http://dx.doi.org/10.3390/s23052818 |
Ejemplares similares
-
Sensor Selection Framework for Designing Fault Diagnostics System
por: Kulkarni, Amol, et al.
Publicado: (2021) -
Fusion-Learning of Bayesian Network Models for Fault Diagnostics
por: Ademujimi, Toyosi, et al.
Publicado: (2021) -
Real-Time Sensing of Output Polymer Flow Temperature and Volumetric Flowrate in Fused Filament Fabrication Process
por: Badarinath, Rakshith, et al.
Publicado: (2022) -
Digital Twin for Training Bayesian Networks for Fault Diagnostics of Manufacturing Systems
por: Ademujimi, Toyosi, et al.
Publicado: (2022) -
Leveraging electronic health record documentation for Failure Mode and Effects Analysis team identification
por: Kricke, Gayle Shier, et al.
Publicado: (2017)