Cargando…
Posthoc Interpretability of Neural Responses by Grouping Subject Motor Imagery Skills Using CNN-Based Connectivity
Motor Imagery (MI) refers to imagining the mental representation of motor movements without overt motor activity, enhancing physical action execution and neural plasticity with potential applications in medical and professional fields like rehabilitation and education. Currently, the most promising...
Autores principales: | Collazos-Huertas, Diego Fabian, Álvarez-Meza, Andrés Marino, Cárdenas-Peña, David Augusto, Castaño-Duque, Germán Albeiro, Castellanos-Domínguez, César Germán |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007181/ https://www.ncbi.nlm.nih.gov/pubmed/36904950 http://dx.doi.org/10.3390/s23052750 |
Ejemplares similares
-
CNN-based framework using spatial dropping for enhanced interpretation of neural activity in motor imagery classification
por: Collazos-Huertas, D. F., et al.
Publicado: (2020) -
A Novel OpenBCI Framework for EEG-Based Neurophysiological Experiments
por: Cardona-Álvarez, Yeison Nolberto, et al.
Publicado: (2023) -
Deep Neural Regression Prediction of Motor Imagery Skills Using EEG Functional Connectivity Indicators
por: Caicedo-Acosta, Julian, et al.
Publicado: (2021) -
Enhanced Multiple Instance Representation Using Time-Frequency Atoms in Motor Imagery Classification
por: Collazos-Huertas, Diego, et al.
Publicado: (2020) -
Subject-Dependent Artifact Removal for Enhancing Motor Imagery Classifier Performance under Poor Skills
por: Tobón-Henao, Mateo, et al.
Publicado: (2022)