Cargando…
Acoustic Velocity Measurement for Enhancing Laser UltraSound Imaging Based on Time Domain Synthetic Aperture Focusing Technique
A method to enhance laser ultrasound (LUS) image reconstruction with the time-domain synthetic aperture focusing technique (T-SAFT) is presented, in which the acoustic velocity is extracted in situ with curve fitting. The operational principle is provided with the help of a numerical simulation, and...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007195/ https://www.ncbi.nlm.nih.gov/pubmed/36904840 http://dx.doi.org/10.3390/s23052635 |
Sumario: | A method to enhance laser ultrasound (LUS) image reconstruction with the time-domain synthetic aperture focusing technique (T-SAFT) is presented, in which the acoustic velocity is extracted in situ with curve fitting. The operational principle is provided with the help of a numerical simulation, and the confirmation is provided experimentally. In these experiments, an all-optic LUS system was developed by using lasers for both excitation and detection of ultrasound. The acoustic velocity of a specimen was extracted in situ by fitting a hyperbolic curve to its B-scan image. The needle-like objects embedded within a polydimethylsiloxane (PDMS) block and a chicken breast have been successfully reconstructed using the extracted in situ acoustic velocity. Experimental results suggest that knowing the acoustic velocity in the T-SAFT process is important not only in finding the depth location of the target object but also for producing a high resolution image. This study is expected to pave the wave to the development and usage of all-optic LUS for bio-medical imaging. |
---|