Cargando…
Dyspnea Severity Assessment Based on Vocalization Behavior with Deep Learning on the Telephone
In this paper, a system to assess dyspnea with the mMRC scale, on the phone, via deep learning, is proposed. The method is based on modeling the spontaneous behavior of subjects while pronouncing controlled phonetization. These vocalizations were designed, or chosen, to deal with the stationary nois...
Autores principales: | Alvarado, Eduardo, Grágeda, Nicolás, Luzanto, Alejandro, Mahu, Rodrigo, Wuth, Jorge, Mendoza, Laura, Yoma, Néstor Becerra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007248/ https://www.ncbi.nlm.nih.gov/pubmed/36904646 http://dx.doi.org/10.3390/s23052441 |
Ejemplares similares
-
Automatic Detection of Dyspnea in Real Human–Robot Interaction Scenarios
por: Alvarado, Eduardo, et al.
Publicado: (2023) -
Feasibility of completing Multidimensional Dyspnea Profile and Dyspnea-12 over the telephone in patients with oxygen-dependent disease
por: Bech, Thea Wilhelmine, et al.
Publicado: (2021) -
Endoscopic posterior cordotomy for treatment of dyspnea due to vocal fold immobility
por: Carmel-Neiderman, Narin Nard, et al.
Publicado: (2020) -
Anterior Cervical Osteophytes Causing Dysphagia and Paradoxical Vocal Cord Motion Leading to Dyspnea and Dysphonia
por: Seo, Joon Won, et al.
Publicado: (2013) -
Symptom practice guide for telephone assessment of patients with cancer treatment-related cardiotoxic dyspnea: Adaptation and evaluation of acceptability
por: Kelly, F., et al.
Publicado: (2017)