Cargando…
Unsupervised Anomaly Detection for IoT-Based Multivariate Time Series: Existing Solutions, Performance Analysis and Future Directions
The recent wave of digitalization is characterized by the widespread deployment of sensors in many different environments, e.g., multi-sensor systems represent a critical enabling technology towards full autonomy in industrial scenarios. Sensors usually produce vast amounts of unlabeled data in the...
Autores principales: | Belay, Mohammed Ayalew, Blakseth, Sindre Stenen, Rasheed, Adil, Salvo Rossi, Pierluigi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007300/ https://www.ncbi.nlm.nih.gov/pubmed/36905048 http://dx.doi.org/10.3390/s23052844 |
Ejemplares similares
-
Generating Datasets for Anomaly-Based Intrusion Detection Systems in IoT and Industrial IoT Networks
por: Essop, Ismael, et al.
Publicado: (2021) -
Azure IoT development cookbook: develop and manage robust IoT solutions
por: Patil, Yatish
Publicado: (2017) -
IoT technical challenges and solutions
por: Pal, Arpan, et al.
Publicado: (2016) -
Masked Graph Neural Networks for Unsupervised Anomaly Detection in Multivariate Time Series
por: Xu, Kang, et al.
Publicado: (2023) -
Efficient Anomaly Detection for Smart Hospital IoT Systems
por: Said, Abdel Mlak, et al.
Publicado: (2021)