Cargando…
Quaternized Poly(N,N′-dimethylaminoethyl methacrylate) Star Nanostructures in the Solution and on the Surface
Antibacterial polymeric materials are promising in the fight against resistant bacteria strains. Amongst them, cationic macromolecules with quaternary ammonium groups are one of intensively studied, as they interact with the bacterial membranes causing cell death. In this work, we propose to use nan...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007306/ https://www.ncbi.nlm.nih.gov/pubmed/36904499 http://dx.doi.org/10.3390/polym15051260 |
_version_ | 1784905487328739328 |
---|---|
author | Teper, Paulina Celny, Anna Kowalczuk, Agnieszka Mendrek, Barbara |
author_facet | Teper, Paulina Celny, Anna Kowalczuk, Agnieszka Mendrek, Barbara |
author_sort | Teper, Paulina |
collection | PubMed |
description | Antibacterial polymeric materials are promising in the fight against resistant bacteria strains. Amongst them, cationic macromolecules with quaternary ammonium groups are one of intensively studied, as they interact with the bacterial membranes causing cell death. In this work, we propose to use nanostructures composed of polycations with star topology for the preparation of antibacterial materials. First, star polymers of N,N′-dimethylaminoethyl methacrylate and hydroxyl-bearing oligo(ethylene glycol) methacrylate P(DMAEMA-co-OEGMA-OH) were quaternized with various bromoalkanes and their solution behavior was studied. It was shown that in water two modes of star nanoparticles were observed, of diameters about 30 nm and up to 125 nm, independently of the quaternizing agent. Separately layers of P(DMAEMA-co-OEGMA-OH) stars were obtained. In this case, the chemical grafting of polymers to the silicon wafers modified with imidazole derivatives was applied, followed by the quaternization of the amino groups of polycations. A comparison of the quaternary reaction in solution and on the surface showed that in the solution it is influenced by the alkyl chain length of the quaternary agent, while on the surface such relationship is not observed. After physico-chemical characterization of the obtained nanolayers, their biocidal activity was tested against two strains of bacteria E. coli and B. subtilis. The best antibacterial properties exhibited layers quaternized with shorter alkyl bromide, where 100% growth inhibition of E. coli and B. subtilis after 24 h of contact was observed. |
format | Online Article Text |
id | pubmed-10007306 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100073062023-03-12 Quaternized Poly(N,N′-dimethylaminoethyl methacrylate) Star Nanostructures in the Solution and on the Surface Teper, Paulina Celny, Anna Kowalczuk, Agnieszka Mendrek, Barbara Polymers (Basel) Article Antibacterial polymeric materials are promising in the fight against resistant bacteria strains. Amongst them, cationic macromolecules with quaternary ammonium groups are one of intensively studied, as they interact with the bacterial membranes causing cell death. In this work, we propose to use nanostructures composed of polycations with star topology for the preparation of antibacterial materials. First, star polymers of N,N′-dimethylaminoethyl methacrylate and hydroxyl-bearing oligo(ethylene glycol) methacrylate P(DMAEMA-co-OEGMA-OH) were quaternized with various bromoalkanes and their solution behavior was studied. It was shown that in water two modes of star nanoparticles were observed, of diameters about 30 nm and up to 125 nm, independently of the quaternizing agent. Separately layers of P(DMAEMA-co-OEGMA-OH) stars were obtained. In this case, the chemical grafting of polymers to the silicon wafers modified with imidazole derivatives was applied, followed by the quaternization of the amino groups of polycations. A comparison of the quaternary reaction in solution and on the surface showed that in the solution it is influenced by the alkyl chain length of the quaternary agent, while on the surface such relationship is not observed. After physico-chemical characterization of the obtained nanolayers, their biocidal activity was tested against two strains of bacteria E. coli and B. subtilis. The best antibacterial properties exhibited layers quaternized with shorter alkyl bromide, where 100% growth inhibition of E. coli and B. subtilis after 24 h of contact was observed. MDPI 2023-03-01 /pmc/articles/PMC10007306/ /pubmed/36904499 http://dx.doi.org/10.3390/polym15051260 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Teper, Paulina Celny, Anna Kowalczuk, Agnieszka Mendrek, Barbara Quaternized Poly(N,N′-dimethylaminoethyl methacrylate) Star Nanostructures in the Solution and on the Surface |
title | Quaternized Poly(N,N′-dimethylaminoethyl methacrylate) Star Nanostructures in the Solution and on the Surface |
title_full | Quaternized Poly(N,N′-dimethylaminoethyl methacrylate) Star Nanostructures in the Solution and on the Surface |
title_fullStr | Quaternized Poly(N,N′-dimethylaminoethyl methacrylate) Star Nanostructures in the Solution and on the Surface |
title_full_unstemmed | Quaternized Poly(N,N′-dimethylaminoethyl methacrylate) Star Nanostructures in the Solution and on the Surface |
title_short | Quaternized Poly(N,N′-dimethylaminoethyl methacrylate) Star Nanostructures in the Solution and on the Surface |
title_sort | quaternized poly(n,n′-dimethylaminoethyl methacrylate) star nanostructures in the solution and on the surface |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007306/ https://www.ncbi.nlm.nih.gov/pubmed/36904499 http://dx.doi.org/10.3390/polym15051260 |
work_keys_str_mv | AT teperpaulina quaternizedpolynndimethylaminoethylmethacrylatestarnanostructuresinthesolutionandonthesurface AT celnyanna quaternizedpolynndimethylaminoethylmethacrylatestarnanostructuresinthesolutionandonthesurface AT kowalczukagnieszka quaternizedpolynndimethylaminoethylmethacrylatestarnanostructuresinthesolutionandonthesurface AT mendrekbarbara quaternizedpolynndimethylaminoethylmethacrylatestarnanostructuresinthesolutionandonthesurface |