Cargando…

Myoelectric Pattern Recognition Using Gramian Angular Field and Convolutional Neural Networks for Muscle–Computer Interface

In the field of the muscle–computer interface, the most challenging task is extracting patterns from complex surface electromyography (sEMG) signals to improve the performance of myoelectric pattern recognition. To address this problem, a two-stage architecture, consisting of Gramian angular field (...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Junjun, Wen, Jiajun, Lai, Zhihui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007307/
https://www.ncbi.nlm.nih.gov/pubmed/36904918
http://dx.doi.org/10.3390/s23052715
Descripción
Sumario:In the field of the muscle–computer interface, the most challenging task is extracting patterns from complex surface electromyography (sEMG) signals to improve the performance of myoelectric pattern recognition. To address this problem, a two-stage architecture, consisting of Gramian angular field (GAF)-based 2D representation and convolutional neural network (CNN)-based classification (GAF-CNN), is proposed. To explore discriminant channel features from sEMG signals, sEMG-GAF transformation is proposed for time sequence signal representation and feature modeling, in which the instantaneous values of multichannel sEMG signals are encoded in image form. A deep CNN model is introduced to extract high-level semantic features lying in image-form-based time sequence signals concerning instantaneous values for image classification. An insight analysis explains the rationale behind the advantages of the proposed method. Extensive experiments are conducted on benchmark publicly available sEMG datasets, i.e., NinaPro and CagpMyo, whose experimental results validate that the proposed GAF-CNN method is comparable to the state-of-the-art methods, as reported by previous work incorporating CNN models.