Cargando…
Discrete Geodesic Distribution-Based Graph Kernel for 3D Point Clouds
In the structural analysis of discrete geometric data, graph kernels have a great track record of performance. Using graph kernel functions provides two significant advantages. First, a graph kernel is capable of preserving the graph’s topological structures by describing graph properties in a high-...
Autores principales: | Balcı, Mehmet Ali, Akgüller, Ömer, Batrancea, Larissa M., Gaban, Lucian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007318/ https://www.ncbi.nlm.nih.gov/pubmed/36904604 http://dx.doi.org/10.3390/s23052398 |
Ejemplares similares
-
A Series-Based Deep Learning Approach to Lung Nodule Image Classification
por: Balcı, Mehmet Ali, et al.
Publicado: (2023) -
Empirical investigation on how wellbeing-related infrastructure shapes economic growth: Evidence from the European Union regions
por: Batrancea, Larissa M., et al.
Publicado: (2023) -
Geodesic convexity in graphs
por: Pelayo, Ignacio M
Publicado: (2013) -
On the geometry of geodesics in discrete optimal transport
por: Erbar, Matthias, et al.
Publicado: (2018) -
Upper and lower bounds for the mass of the geodesic flow on graphs
por: Coornaert, M, et al.
Publicado: (1995)