Cargando…
Evaluation of GAN-Based Model for Adversarial Training
Deep learning has been successfully utilized in many applications, but it is vulnerable to adversarial samples. To address this vulnerability, a generative adversarial network (GAN) has been used to train a robust classifier. This paper presents a novel GAN model and its implementation to defend aga...
Autores principales: | Zhao, Weimin, Mahmoud, Qusay H., Alwidian, Sanaa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007326/ https://www.ncbi.nlm.nih.gov/pubmed/36904900 http://dx.doi.org/10.3390/s23052697 |
Ejemplares similares
-
Generative Adversarial Network (GAN)-Based Autonomous Penetration Testing for Web Applications
por: Chowdhary, Ankur, et al.
Publicado: (2023) -
Application of Generative Adversarial Networks (GANs) to jet images
por: Paganini, Michela
Publicado: (2017) -
Extended Spatially Localized Perturbation GAN (eSLP-GAN) for Robust Adversarial Camouflage Patches †
por: Kim, Yongsu, et al.
Publicado: (2021) -
TasselGAN: An Application of the Generative Adversarial Model for Creating Field-Based Maize Tassel Data
por: Shete, Snehal, et al.
Publicado: (2020) -
MB-GAN: Microbiome Simulation via Generative Adversarial Network
por: Rong, Ruichen, et al.
Publicado: (2021)