Cargando…
Stress State Classification Based on Deep Neural Network and Electrodermal Activity Modeling
Electrodermal Activity (EDA) has become of great interest in the last several decades, due to the advent of new devices that allow for recording a lot of psychophysiological data for remotely monitoring patients’ health. In this work, a novel method of analyzing EDA signals is proposed with the ulti...
Autores principales: | Vasile, Floriana, Vizziello, Anna, Brondino, Natascia, Savazzi, Pietro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007362/ https://www.ncbi.nlm.nih.gov/pubmed/36904705 http://dx.doi.org/10.3390/s23052504 |
Ejemplares similares
-
Electrodermal Activity Sensor for Classification of Calm/Distress Condition
por: Zangróniz, Roberto, et al.
Publicado: (2017) -
Electrodermal Activity Is Sensitive to Cognitive Stress under Water
por: Posada-Quintero, Hugo F., et al.
Publicado: (2018) -
Electrodermal Activity for Measuring Cognitive and Emotional Stress Level
por: Rahma, Osmalina Nur, et al.
Publicado: (2022) -
Electrodermal activity patient simulator
por: Geršak, Gregor, et al.
Publicado: (2020) -
Classification of Emotions Based on Electrodermal Activity and Transfer Learning - a Pilot Study
por: Jacobsen, Fredrik A., et al.
Publicado: (2021)