Cargando…

Random Traffic Flow Simulation of Heavy Vehicles Based on R-Vine Copula Model and Improved Latin Hypercube Sampling Method

The rationality of heavy vehicle models is crucial to the structural safety assessment of bridges. To establish a realistic heavy vehicle traffic flow model, this study proposes a heavy vehicle random traffic flow simulation method that fully considers the vehicle weight correlation based on the mea...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Hailin, Sun, Dongchen, Hao, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007363/
https://www.ncbi.nlm.nih.gov/pubmed/36904996
http://dx.doi.org/10.3390/s23052795
Descripción
Sumario:The rationality of heavy vehicle models is crucial to the structural safety assessment of bridges. To establish a realistic heavy vehicle traffic flow model, this study proposes a heavy vehicle random traffic flow simulation method that fully considers the vehicle weight correlation based on the measured weigh-in-motion data. First, a probability model of the key parameters in the actual traffic flow is established. Then, a random traffic flow simulation of heavy vehicles is realized using the R-vine Copula model and improved Latin hypercube sampling (LHS) method. Finally, the load effect is calculated using a calculation example to explore the necessity of considering the vehicle weight correlation. The results indicate that the vehicle weight of each model is significantly correlated. Compared to the Monte Carlo method, the improved LHS method better considers the correlation between high-dimensional variables. Furthermore, considering the vehicle weight correlation using the R-vine Copula model, the random traffic flow generated by the Monte Carlo sampling method ignores the correlation between parameters, leading to a weaker load effect. Therefore, the improved LHS method is preferred.