Cargando…
Real-Time Evaluation of Perception Uncertainty and Validity Verification of Autonomous Driving
Deep neural network algorithms have achieved impressive performance in object detection. Real-time evaluation of perception uncertainty from deep neural network algorithms is indispensable for safe driving in autonomous vehicles. More research is required to determine how to assess the effectiveness...
Autores principales: | Yang, Mingliang, Jiang, Kun, Wen, Junze, Peng, Liang, Yang, Yanding, Wang, Hong, Yang, Mengmeng, Jiao, Xinyu, Yang, Diange |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007375/ https://www.ncbi.nlm.nih.gov/pubmed/36905068 http://dx.doi.org/10.3390/s23052867 |
Ejemplares similares
-
MMW Radar-Based Technologies in Autonomous Driving: A Review
por: Zhou, Taohua, et al.
Publicado: (2020) -
Formal Verification of Real-Time Autonomous Robots: An Interdisciplinary Approach
por: Foughali, Mohammed, et al.
Publicado: (2022) -
Real-Time LiDAR Point-Cloud Moving Object Segmentation for Autonomous Driving
por: Xie, Xing, et al.
Publicado: (2023) -
Adaptive Real-Time Object Detection for Autonomous Driving Systems
por: Hemmati, Maryam, et al.
Publicado: (2022) -
Automatic Extraction of Structural and Non-Structural Road Edges from Mobile Laser Scanning Data
por: Yang, Mengmeng, et al.
Publicado: (2019)