Cargando…
Combining the YOLOv4 Deep Learning Model with UAV Imagery Processing Technology in the Extraction and Quantization of Cracks in Bridges
Bridges are often at risk due to the effects of natural disasters, such as earthquakes and typhoons. Bridge inspection assessments normally focus on cracks. However, numerous concrete structures with cracked surfaces are highly elevated or over water, and is not easily accessible to a bridge inspect...
Autores principales: | Kao, Szu-Pyng, Chang, Yung-Chen, Wang, Feng-Liang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007411/ https://www.ncbi.nlm.nih.gov/pubmed/36904775 http://dx.doi.org/10.3390/s23052572 |
Ejemplares similares
-
Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs
por: Nepal, Upesh, et al.
Publicado: (2022) -
Bridge Crack Inspection Efficiency of an Unmanned Aerial Vehicle System with a Laser Ranging Module
por: Kao, Szu-Pyng, et al.
Publicado: (2022) -
UAV-YOLOv8: A Small-Object-Detection Model Based on Improved YOLOv8 for UAV Aerial Photography Scenarios
por: Wang, Gang, et al.
Publicado: (2023) -
Improved GBS-YOLOv5 algorithm based on YOLOv5 applied to UAV intelligent traffic
por: Liu, Haiying, et al.
Publicado: (2023) -
Improved YOLOv4 for Pedestrian Detection and Counting in UAV Images
por: Kong, Hao, et al.
Publicado: (2022)