Cargando…

Integrated Land Suitability Assessment for Depots Siting in a Sustainable Biomass Supply Chain

A sustainable biomass supply chain would require not only an effective and fluid transportation system with a reduced carbon footprint and costs, but also good soil characteristics ensuring durable biomass feedstock presence. Unlike existing approaches that fail to account for ecological factors, th...

Descripción completa

Detalles Bibliográficos
Autores principales: Toba, Ange-Lionel, Paudel, Rajiv, Lin, Yingqian, Mendadhala, Rohit V., Hartley, Damon S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007443/
https://www.ncbi.nlm.nih.gov/pubmed/36904624
http://dx.doi.org/10.3390/s23052421
_version_ 1784905522664701952
author Toba, Ange-Lionel
Paudel, Rajiv
Lin, Yingqian
Mendadhala, Rohit V.
Hartley, Damon S.
author_facet Toba, Ange-Lionel
Paudel, Rajiv
Lin, Yingqian
Mendadhala, Rohit V.
Hartley, Damon S.
author_sort Toba, Ange-Lionel
collection PubMed
description A sustainable biomass supply chain would require not only an effective and fluid transportation system with a reduced carbon footprint and costs, but also good soil characteristics ensuring durable biomass feedstock presence. Unlike existing approaches that fail to account for ecological factors, this work integrates ecological as well as economic factors for developing sustainable supply chain development. For feedstock to be sustainably supplied, it necessitates adequate environmental conditions, which need to be captured in supply chain analysis. Using geospatial data and heuristics, we present an integrated framework that models biomass production suitability, capturing the economic aspect via transportation network analysis and the environmental aspect via ecological indicators. Production suitability is estimated using scores, considering both ecological factors and road transportation networks. These factors include land cover/crop rotation, slope, soil properties (productivity, soil texture, and erodibility factor) and water availability. This scoring determines the spatial distribution of depots with priority to fields scoring the highest. Two methods for depot selection are presented using graph theory and a clustering algorithm to benefit from contextualized insights from both and potentially gain a more comprehensive understanding of biomass supply chain designs. Graph theory, via the clustering coefficient, helps determine dense areas in the network and indicate the most appropriate location for a depot. Clustering algorithm, via K-means, helps form clusters and determine the depot location at the center of these clusters. An application of this innovative concept is performed on a case study in the US South Atlantic, in the Piedmont region, determining distance traveled and depot locations, with implications on supply chain design. The findings from this study show that a more decentralized depot-based supply chain design with 3depots, obtained using the graph theory method, can be more economical and environmentally friendly compared to a design obtained from the clustering algorithm method with 2 depots. In the former, the distance from fields to depots totals 801,031,476 miles, while in the latter, it adds up to 1,037,606,072 miles, which represents about 30% more distance covered for feedstock transportation.
format Online
Article
Text
id pubmed-10007443
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-100074432023-03-12 Integrated Land Suitability Assessment for Depots Siting in a Sustainable Biomass Supply Chain Toba, Ange-Lionel Paudel, Rajiv Lin, Yingqian Mendadhala, Rohit V. Hartley, Damon S. Sensors (Basel) Article A sustainable biomass supply chain would require not only an effective and fluid transportation system with a reduced carbon footprint and costs, but also good soil characteristics ensuring durable biomass feedstock presence. Unlike existing approaches that fail to account for ecological factors, this work integrates ecological as well as economic factors for developing sustainable supply chain development. For feedstock to be sustainably supplied, it necessitates adequate environmental conditions, which need to be captured in supply chain analysis. Using geospatial data and heuristics, we present an integrated framework that models biomass production suitability, capturing the economic aspect via transportation network analysis and the environmental aspect via ecological indicators. Production suitability is estimated using scores, considering both ecological factors and road transportation networks. These factors include land cover/crop rotation, slope, soil properties (productivity, soil texture, and erodibility factor) and water availability. This scoring determines the spatial distribution of depots with priority to fields scoring the highest. Two methods for depot selection are presented using graph theory and a clustering algorithm to benefit from contextualized insights from both and potentially gain a more comprehensive understanding of biomass supply chain designs. Graph theory, via the clustering coefficient, helps determine dense areas in the network and indicate the most appropriate location for a depot. Clustering algorithm, via K-means, helps form clusters and determine the depot location at the center of these clusters. An application of this innovative concept is performed on a case study in the US South Atlantic, in the Piedmont region, determining distance traveled and depot locations, with implications on supply chain design. The findings from this study show that a more decentralized depot-based supply chain design with 3depots, obtained using the graph theory method, can be more economical and environmentally friendly compared to a design obtained from the clustering algorithm method with 2 depots. In the former, the distance from fields to depots totals 801,031,476 miles, while in the latter, it adds up to 1,037,606,072 miles, which represents about 30% more distance covered for feedstock transportation. MDPI 2023-02-22 /pmc/articles/PMC10007443/ /pubmed/36904624 http://dx.doi.org/10.3390/s23052421 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Toba, Ange-Lionel
Paudel, Rajiv
Lin, Yingqian
Mendadhala, Rohit V.
Hartley, Damon S.
Integrated Land Suitability Assessment for Depots Siting in a Sustainable Biomass Supply Chain
title Integrated Land Suitability Assessment for Depots Siting in a Sustainable Biomass Supply Chain
title_full Integrated Land Suitability Assessment for Depots Siting in a Sustainable Biomass Supply Chain
title_fullStr Integrated Land Suitability Assessment for Depots Siting in a Sustainable Biomass Supply Chain
title_full_unstemmed Integrated Land Suitability Assessment for Depots Siting in a Sustainable Biomass Supply Chain
title_short Integrated Land Suitability Assessment for Depots Siting in a Sustainable Biomass Supply Chain
title_sort integrated land suitability assessment for depots siting in a sustainable biomass supply chain
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007443/
https://www.ncbi.nlm.nih.gov/pubmed/36904624
http://dx.doi.org/10.3390/s23052421
work_keys_str_mv AT tobaangelionel integratedlandsuitabilityassessmentfordepotssitinginasustainablebiomasssupplychain
AT paudelrajiv integratedlandsuitabilityassessmentfordepotssitinginasustainablebiomasssupplychain
AT linyingqian integratedlandsuitabilityassessmentfordepotssitinginasustainablebiomasssupplychain
AT mendadhalarohitv integratedlandsuitabilityassessmentfordepotssitinginasustainablebiomasssupplychain
AT hartleydamons integratedlandsuitabilityassessmentfordepotssitinginasustainablebiomasssupplychain