Cargando…

Key Technologies and Evaluation of a MiniSAR Experimental System for Unmanned Underwater Vehicle Detection

Synthetic aperture radar (SAR) imaging has important application potential in sea environments research, such as submarine detection. It has become one of the most significant research topics in the current SAR imaging field. In order to promote the development and application of SAR imaging technol...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Ke, Liu, Qianqian, Li, Xiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007444/
https://www.ncbi.nlm.nih.gov/pubmed/36904699
http://dx.doi.org/10.3390/s23052490
Descripción
Sumario:Synthetic aperture radar (SAR) imaging has important application potential in sea environments research, such as submarine detection. It has become one of the most significant research topics in the current SAR imaging field. In order to promote the development and application of SAR imaging technology, a MiniSAR experiment system is designed and developed, which provides a platform for related technology investigation and verification. A flight experiment is then conducted to detect the movement of an unmanned underwater vehicle (UUV) through the wake, which can be captured by SAR. This paper introduces the basic structure and the performance of the experimental system. The key technologies for Doppler frequency estimation and motion compensation, the implementation of the flight experiment, and the image data processing results are given. The imaging performances are evaluated, and the imaging capabilities of the system are verified. The system provides a good experimental verification platform to construct the follow-up SAR imaging dataset of UUV wake and investigate related digital signal processing algorithms.