Cargando…
Ultra-High-Speed Accelerator Architecture for Convolutional Neural Network Based on Processing-in-Memory Using Resistive Random Access Memory
Processing-in-Memory (PIM) based on Resistive Random Access Memory (RRAM) is an emerging acceleration architecture for artificial neural networks. This paper proposes an RRAM PIM accelerator architecture that does not use Analog-to-Digital Converters (ADCs) and Digital-to-Analog Converters (DACs). A...
Autores principales: | Wang, Hongzhe, Wang, Junjie, Hu, Hao, Li, Guo, Hu, Shaogang, Yu, Qi, Liu, Zhen, Chen, Tupei, Zhou, Shijie, Liu, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007456/ https://www.ncbi.nlm.nih.gov/pubmed/36904605 http://dx.doi.org/10.3390/s23052401 |
Ejemplares similares
-
Dual functional states of working memory realized by memristor-based neural network
por: Wang, Hongzhe, et al.
Publicado: (2023) -
Accelerating Inference of Convolutional Neural Networks Using In-memory Computing
por: Dazzi, Martino, et al.
Publicado: (2021) -
A Novel Memory-Scheduling Strategy for Large Convolutional Neural Network on Memory-Limited Devices
por: Li, Shijie, et al.
Publicado: (2019) -
CMOS-compatible compute-in-memory accelerators based on integrated ferroelectric synaptic arrays for convolution neural networks
por: Kim, Min-Kyu, et al.
Publicado: (2022) -
Learning, Memory, and the Role of Neural Network Architecture
por: Hermundstad, Ann M., et al.
Publicado: (2011)