Cargando…
CST: Complex Sparse Transformer for Low-SNR Speech Enhancement
Speech enhancement tasks for audio with a low SNR are challenging. Existing speech enhancement methods are mainly designed for high SNR audio, and they usually use RNNs to model audio sequence features, which causes the model to be unable to learn long-distance dependencies, thus limiting its perfor...
Autores principales: | Tan, Kaijun, Mao, Wenyu, Guo, Xiaozhou, Lu, Huaxiang, Zhang, Chi, Cao, Zhanzhong, Wang, Xingang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007472/ https://www.ncbi.nlm.nih.gov/pubmed/36904579 http://dx.doi.org/10.3390/s23052376 |
Ejemplares similares
-
A priori SNR estimation and noise estimation for speech enhancement
por: Yao, Rui, et al.
Publicado: (2016) -
DOA Estimation Based on Weighted l(1)-norm Sparse Representation for Low SNR Scenarios
por: Zuo, Ming, et al.
Publicado: (2021) -
LPG–PCFG: An Improved Probabilistic Context- Free Grammar to Hit Low-Probability Passwords
por: Guo, Xiaozhou, et al.
Publicado: (2022) -
Structure and function of the telomeric CST complex
por: Rice, Cory, et al.
Publicado: (2016) -
The Concurrent OLSA Test: A Method for Speech Recognition in Multi-talker Situations at Fixed SNR
por: Heeren, Jan, et al.
Publicado: (2022)