Cargando…
Towards a Broad-Persistent Advising Approach for Deep Interactive Reinforcement Learning in Robotic Environments
Deep Reinforcement Learning (DeepRL) methods have been widely used in robotics to learn about the environment and acquire behaviours autonomously. Deep Interactive Reinforcement 2 Learning (DeepIRL) includes interactive feedback from an external trainer or expert giving advice to help learners choos...
Autores principales: | Nguyen, Hung Son, Cruz, Francisco, Dazeley, Richard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007476/ https://www.ncbi.nlm.nih.gov/pubmed/36904885 http://dx.doi.org/10.3390/s23052681 |
Ejemplares similares
-
An Evaluation Methodology for Interactive Reinforcement Learning with Simulated Users
por: Bignold, Adam, et al.
Publicado: (2021) -
Dual-Arm Robot Trajectory Planning Based on Deep Reinforcement Learning under Complex Environment
por: Tang, Wanxing, et al.
Publicado: (2022) -
Toward an Interactive Reinforcement Based Learning Framework for Human Robot Collaborative Assembly Processes
por: Akkaladevi, Sharath Chandra, et al.
Publicado: (2018) -
Legislative Advisers
Publicado: (1920) -
Advising the traveller
por: Herman, Joanna, et al.
Publicado: (2018)