Cargando…

Energy Consumption Modeling of 3D-Printed Carbon-Fiber-Reinforced Polymer Parts

Three-dimensionally printed carbon-fiber-reinforced polymer (3DP-CFRP) has become an important contributor to commercialized additive manufacturing. Due to carbon fiber infills, the 3DP-CFRP parts can enjoy highly intricate geometry, enhanced part robustness, heat resistance, and mechanical properti...

Descripción completa

Detalles Bibliográficos
Autores principales: Tiwari, Akash Shashikant, Yang, Sheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007504/
https://www.ncbi.nlm.nih.gov/pubmed/36904537
http://dx.doi.org/10.3390/polym15051290
Descripción
Sumario:Three-dimensionally printed carbon-fiber-reinforced polymer (3DP-CFRP) has become an important contributor to commercialized additive manufacturing. Due to carbon fiber infills, the 3DP-CFRP parts can enjoy highly intricate geometry, enhanced part robustness, heat resistance, and mechanical properties. With the rapid growth of 3DP-CFRP parts in the aerospace, automobile, and consumer product sectors, evaluating and reducing their environmental impacts has become an urgent yet unexplored issue. To develop a quantitative measure of the environmental performance of 3DP-CFRP parts, this paper investigates the energy consumption behavior of a dual-nozzle fused deposition modeling (FDM) additive manufacturing process which includes melting and deposition of the CFRP filament. An energy consumption model for the melting stage is first defined using the heating model for non-crystalline polymers. Then, the energy consumption model for the deposition stage is established through the design of experiments approach and regression by investigating six influential parameters comprising the layer height, infill density, number of shells, travel speed of gantry, and speed of extruders 1 and 2. Finally, the energy consumption models are combined and experimentally tested with two different CFRP parts. The results show that the developed energy consumption model demonstrated over 94% accuracy in predicting the energy consumption behavior of 3DP-CFRP parts. The developed model could potentially be used to find a more sustainable CFRP design and process planning solution.