Cargando…

Effects of Automotive Test Parameters on Dry Friction Fiber-Reinforced Clutch Facing Surface Microgeometry and Wear—Part 3 Tribological Parameter Correlations and Simulation of Thermo-Mechanical Tribological Contact Behavior

Correlations among previously determined tribological properties, such as the coefficient of friction values, wear and surface roughness differences of hybrid composite dry friction clutch facings are revealed after pin-on-disk test apparatus examinations under three pv loads, where samples are cut...

Descripción completa

Detalles Bibliográficos
Autores principales: Kalácska, Gábor, Biczó, Roland
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007515/
https://www.ncbi.nlm.nih.gov/pubmed/36904496
http://dx.doi.org/10.3390/polym15051255
_version_ 1784905540693917696
author Kalácska, Gábor
Biczó, Roland
author_facet Kalácska, Gábor
Biczó, Roland
author_sort Kalácska, Gábor
collection PubMed
description Correlations among previously determined tribological properties, such as the coefficient of friction values, wear and surface roughness differences of hybrid composite dry friction clutch facings are revealed after pin-on-disk test apparatus examinations under three pv loads, where samples are cut from a reference, unused, and several differently aged and dimensioned, used—according to two different trends: dry friction fiber-reinforced hybrid composite clutch facings. In ‘normal use’ facings, increasing specific wear trend is detected as a function of activation energy according to a second-degree function, while a logarithmic trend line can be fitted to the values of the clutch killer facings, showing that even at low activation energy levels, significant (~3%) wear occurs. The specific wear rate also varies as a function of the radius of the friction facing, with the relative wear values measured on the working friction diameter being higher regardless of the usage trend. In terms of surface roughness variation measured in the radial direction, normal use facings show a varying roughness difference according to a third-degree function, while clutch killer facings follow a second-degree or logarithmic trend depending on the diameter (di or dw). From the statistical analysis of the steady-state, we find three different clutch engagement phase characterizing pv level pin-on-disk tribological test results for the specific wear of the clutch killer and normal use facings, and significantly different trend curves with three different sets of functions were obtained, showing that the wear intensity can be described as a function of the pv value and the friction diameter. In terms of radial direction surface roughness difference, the values of clutch killer and normal use samples can be described by three different sets of function showing the effects of the friction radius and pv.
format Online
Article
Text
id pubmed-10007515
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-100075152023-03-12 Effects of Automotive Test Parameters on Dry Friction Fiber-Reinforced Clutch Facing Surface Microgeometry and Wear—Part 3 Tribological Parameter Correlations and Simulation of Thermo-Mechanical Tribological Contact Behavior Kalácska, Gábor Biczó, Roland Polymers (Basel) Article Correlations among previously determined tribological properties, such as the coefficient of friction values, wear and surface roughness differences of hybrid composite dry friction clutch facings are revealed after pin-on-disk test apparatus examinations under three pv loads, where samples are cut from a reference, unused, and several differently aged and dimensioned, used—according to two different trends: dry friction fiber-reinforced hybrid composite clutch facings. In ‘normal use’ facings, increasing specific wear trend is detected as a function of activation energy according to a second-degree function, while a logarithmic trend line can be fitted to the values of the clutch killer facings, showing that even at low activation energy levels, significant (~3%) wear occurs. The specific wear rate also varies as a function of the radius of the friction facing, with the relative wear values measured on the working friction diameter being higher regardless of the usage trend. In terms of surface roughness variation measured in the radial direction, normal use facings show a varying roughness difference according to a third-degree function, while clutch killer facings follow a second-degree or logarithmic trend depending on the diameter (di or dw). From the statistical analysis of the steady-state, we find three different clutch engagement phase characterizing pv level pin-on-disk tribological test results for the specific wear of the clutch killer and normal use facings, and significantly different trend curves with three different sets of functions were obtained, showing that the wear intensity can be described as a function of the pv value and the friction diameter. In terms of radial direction surface roughness difference, the values of clutch killer and normal use samples can be described by three different sets of function showing the effects of the friction radius and pv. MDPI 2023-03-01 /pmc/articles/PMC10007515/ /pubmed/36904496 http://dx.doi.org/10.3390/polym15051255 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kalácska, Gábor
Biczó, Roland
Effects of Automotive Test Parameters on Dry Friction Fiber-Reinforced Clutch Facing Surface Microgeometry and Wear—Part 3 Tribological Parameter Correlations and Simulation of Thermo-Mechanical Tribological Contact Behavior
title Effects of Automotive Test Parameters on Dry Friction Fiber-Reinforced Clutch Facing Surface Microgeometry and Wear—Part 3 Tribological Parameter Correlations and Simulation of Thermo-Mechanical Tribological Contact Behavior
title_full Effects of Automotive Test Parameters on Dry Friction Fiber-Reinforced Clutch Facing Surface Microgeometry and Wear—Part 3 Tribological Parameter Correlations and Simulation of Thermo-Mechanical Tribological Contact Behavior
title_fullStr Effects of Automotive Test Parameters on Dry Friction Fiber-Reinforced Clutch Facing Surface Microgeometry and Wear—Part 3 Tribological Parameter Correlations and Simulation of Thermo-Mechanical Tribological Contact Behavior
title_full_unstemmed Effects of Automotive Test Parameters on Dry Friction Fiber-Reinforced Clutch Facing Surface Microgeometry and Wear—Part 3 Tribological Parameter Correlations and Simulation of Thermo-Mechanical Tribological Contact Behavior
title_short Effects of Automotive Test Parameters on Dry Friction Fiber-Reinforced Clutch Facing Surface Microgeometry and Wear—Part 3 Tribological Parameter Correlations and Simulation of Thermo-Mechanical Tribological Contact Behavior
title_sort effects of automotive test parameters on dry friction fiber-reinforced clutch facing surface microgeometry and wear—part 3 tribological parameter correlations and simulation of thermo-mechanical tribological contact behavior
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007515/
https://www.ncbi.nlm.nih.gov/pubmed/36904496
http://dx.doi.org/10.3390/polym15051255
work_keys_str_mv AT kalacskagabor effectsofautomotivetestparametersondryfrictionfiberreinforcedclutchfacingsurfacemicrogeometryandwearpart3tribologicalparametercorrelationsandsimulationofthermomechanicaltribologicalcontactbehavior
AT biczoroland effectsofautomotivetestparametersondryfrictionfiberreinforcedclutchfacingsurfacemicrogeometryandwearpart3tribologicalparametercorrelationsandsimulationofthermomechanicaltribologicalcontactbehavior