Cargando…
Fully Cross-Attention Transformer for Guided Depth Super-Resolution
Modern depth sensors are often characterized by low spatial resolution, which hinders their use in real-world applications. However, the depth map in many scenarios is accompanied by a corresponding high-resolution color image. In light of this, learning-based methods have been extensively used for...
Autores principales: | Ariav, Ido, Cohen, Israel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007518/ https://www.ncbi.nlm.nih.gov/pubmed/36904930 http://dx.doi.org/10.3390/s23052723 |
Ejemplares similares
-
Multiscale Attention Fusion for Depth Map Super-Resolution Generative Adversarial Networks
por: Xu, Dan, et al.
Publicado: (2023) -
Super-resolution reconstruction based on Gaussian transform and attention mechanism
por: Zou, Shuilong, et al.
Publicado: (2023) -
Super-Resolution Swin Transformer and Attention Network for Medical CT Imaging
por: Hu, Jianhua, et al.
Publicado: (2022) -
Attention Network with Information Distillation for Super-Resolution
por: Zang, Huaijuan, et al.
Publicado: (2022) -
Depth Completion and Super-Resolution with Arbitrary Scale Factors for Indoor Scenes †
por: Truong, Anh Minh, et al.
Publicado: (2021)