Cargando…

Quantitative Detection of Tank Floor Defects by Pseudo-Color Imaging of Three-Dimensional Magnetic Flux Leakage Signals

Highly integrated three-dimensional magnetic sensors have just been developed and have been used in some fields, such as angle measurement of moving objects. The sensor used in this paper is a three-dimensional magnetic sensor with three Hall probes highly integrated inside; 15 sensors are used to d...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Zhijun, Yang, Jiang, Cao, Huaiqing, Sun, Han, Zhao, Yazhong, Zhang, Bowen, Meng, Changpeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007523/
https://www.ncbi.nlm.nih.gov/pubmed/36904894
http://dx.doi.org/10.3390/s23052691
Descripción
Sumario:Highly integrated three-dimensional magnetic sensors have just been developed and have been used in some fields, such as angle measurement of moving objects. The sensor used in this paper is a three-dimensional magnetic sensor with three Hall probes highly integrated inside; 15 sensors are used to design the sensor array and then measure the magnetic field leakage of the steel plate; the three-dimensional component characteristics of the magnetic field leakage are used to determine the defect area. Pseudo-color imaging is the most widely used in the imaging field. In this paper, color imaging is used to process magnetic field data. Compared with analyzing the three-dimensional magnetic field information obtained directly, this paper converts the magnetic field information into color image information through pseudo-color imaging and then obtains the color moment characteristic values of the color image in the defect area. Moreover, the least-square support-vector machine and particle swarm optimization (PSO-LSSVM) algorithm are used to quantitatively identify the defects. The results show that the three-dimensional component of the magnetic field leakage can effectively determine the area range of defects, and it is feasible to use the color image characteristic value of the three-dimensional magnetic field leakage signal to identify defects quantitatively. Compared with a single component, the three-dimensional component can effectively improve the identification rate of defects.