Cargando…

Induction Motor Fault Diagnosis Using Support Vector Machine, Neural Networks, and Boosting Methods

Induction motors are robust and cost effective; thus, they are commonly used as power sources in various industrial applications. However, due to the characteristics of induction motors, industrial processes can stop when motor failures occur. Thus, research is required to realize the quick and accu...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Min-Chan, Lee, Jong-Hyun, Wang, Dong-Hun, Lee, In-Soo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007536/
https://www.ncbi.nlm.nih.gov/pubmed/36904787
http://dx.doi.org/10.3390/s23052585
Descripción
Sumario:Induction motors are robust and cost effective; thus, they are commonly used as power sources in various industrial applications. However, due to the characteristics of induction motors, industrial processes can stop when motor failures occur. Thus, research is required to realize the quick and accurate diagnosis of faults in induction motors. In this study, we constructed an induction motor simulator with normal, rotor failure, and bearing failure states. Using this simulator, 1240 vibration datasets comprising 1024 data samples were obtained for each state. Then, failure diagnosis was performed on the acquired data using support vector machine, multilayer neural network, convolutional neural network, gradient boosting machine, and XGBoost machine learning models. The diagnostic accuracies and calculation speeds of these models were verified via stratified K-fold cross validation. In addition, a graphical user interface was designed and implemented for the proposed fault diagnosis technique. The experimental results demonstrate that the proposed fault diagnosis technique is suitable for diagnosing faults in induction motors.