Cargando…
Research on Driving Obstacle Detection Technology in Foggy Weather Based on GCANet and Feature Fusion Training
The issues of the degradation of the visual sensor’s image quality in foggy weather and the loss of information after defogging have brought great challenges to obstacle detection during autonomous driving. Therefore, this paper proposes a method for detecting driving obstacles in foggy weather. The...
Autores principales: | Liu, Zhaohui, Zhao, Shiji, Wang, Xiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007539/ https://www.ncbi.nlm.nih.gov/pubmed/36905026 http://dx.doi.org/10.3390/s23052822 |
Ejemplares similares
-
Analysis of the Influence of Foggy Weather Environment on the Detection Effect of Machine Vision Obstacles
por: Liu, Zhaohui, et al.
Publicado: (2020) -
3D Object Detection with SLS-Fusion Network in Foggy Weather Conditions
por: Mai, Nguyen Anh Minh, et al.
Publicado: (2021) -
Insulator Umbrella Disc Shedding Detection in Foggy Weather
por: Xin, Rui, et al.
Publicado: (2022) -
Deep Camera–Radar Fusion with an Attention Framework for Autonomous Vehicle Vision in Foggy Weather Conditions
por: Ogunrinde, Isaac, et al.
Publicado: (2023) -
Domain Adaptation and Adaptive Information Fusion for Object Detection on Foggy Days
por: Chen, Zhe, et al.
Publicado: (2018)