Cargando…
3D Scanner-Based Identification of Welding Defects—Clustering the Results of Point Cloud Alignment
This paper describes a framework for detecting welding errors using 3D scanner data. The proposed approach employs density-based clustering to compare point clouds and identify deviations. The discovered clusters are then classified according to standard welding fault classes. Six welding deviations...
Autores principales: | Hegedűs-Kuti, János, Szőlősi, József, Varga, Dániel, Abonyi, János, Andó, Mátyás, Ruppert, Tamás |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007542/ https://www.ncbi.nlm.nih.gov/pubmed/36904704 http://dx.doi.org/10.3390/s23052503 |
Ejemplares similares
-
Software Sensor for Activity-Time Monitoring and Fault Detection in Production Lines
por: Ruppert, Tamas, et al.
Publicado: (2018) -
Goal-oriented possibilistic fuzzy C-Medoid clustering of human mobility patterns—Illustrative application for the Taxicab trips-based enrichment of public transport services
por: Mezei, Miklós, et al.
Publicado: (2022) -
Demonstration Laboratory of Industry 4.0 Retrofitting and Operator 4.0 Solutions: Education towards Industry 5.0
por: Ruppert, Tamás, et al.
Publicado: (2022) -
Cluster Analysis for Data Mining and System Identification
por: Abonyi, János, et al.
Publicado: (2007) -
The human-centric Industry 5.0 collaboration architecture
por: Tóth, Attila, et al.
Publicado: (2023)