Cargando…

Integrated Probe System for Measuring Soil Carbon Dioxide Concentrations

This article outlines the design and implementation of an internet-of-things (IoT) platform for the monitoring of soil carbon dioxide (CO(2)) concentrations. As atmospheric CO(2) continues to rise, accurate accounting of major carbon sources, such as soil, is essential to inform land management and...

Descripción completa

Detalles Bibliográficos
Autores principales: Hassan, Sammy, Mushinski, Ryan M., Amede, Tilahun, Bending, Gary D., Covington, James A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007546/
https://www.ncbi.nlm.nih.gov/pubmed/36904784
http://dx.doi.org/10.3390/s23052580
Descripción
Sumario:This article outlines the design and implementation of an internet-of-things (IoT) platform for the monitoring of soil carbon dioxide (CO(2)) concentrations. As atmospheric CO(2) continues to rise, accurate accounting of major carbon sources, such as soil, is essential to inform land management and government policy. Thus, a batch of IoT-connected CO(2) sensor probes were developed for soil measurement. These sensors were designed to capture spatial distribution of CO(2) concentrations across a site and communicate to a central gateway using LoRa. CO(2) concentration and other environmental parameters, including temperature, humidity and volatile organic compound concentration, were logged locally and communicated to the user through a mobile (GSM) connection to a hosted website. Following three field deployments in summer and autumn, we observed clear depth and diurnal variation of soil CO(2) concentration within woodland systems. We determined that the unit had the capacity to log data continuously for a maximum of 14 days. These low-cost systems have great potential for better accounting of soil CO(2) sources over temporal and spatial gradients and possibly flux estimations. Future testing will focus on divergent landscapes and soil conditions.