Cargando…

A Location-Aware Resource Optimization for Maximizing Throughput of Emergency Outdoor–Indoor UAV Communication with FSO/RF

In emergency communication scenarios, unmanned aerial vehicles (UAVs) can be used as an air relay to provide higher-quality communication for indoor users. When bandwidth resources are scarce, the use of free space optics (FSO) technology will greatly improve the resource utilization of the communic...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Zinan, Gao, Wei, Ye, Haijun, Wang, Guofeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007559/
https://www.ncbi.nlm.nih.gov/pubmed/36904746
http://dx.doi.org/10.3390/s23052541
Descripción
Sumario:In emergency communication scenarios, unmanned aerial vehicles (UAVs) can be used as an air relay to provide higher-quality communication for indoor users. When bandwidth resources are scarce, the use of free space optics (FSO) technology will greatly improve the resource utilization of the communication system. Therefore, we introduce FSO technology into the backhaul link of outdoor communication, and use free space optical/radio frequency (FSO/RF) technology to realize the access link of outdoor indoor communication. The deployment location of UAVs will affect not only the through wall loss of outdoor–indoor communication but also the quality of FSO communication, and, therefore, it needs to be optimized. In addition, by optimizing the power and bandwidth allocation of UAVs, we realize the efficient utilization of resources and improve the system throughput on the premise of considering information causality constraints and user fairness. The simulation results show that, by optimizing the location and power bandwidth allocation of UAVs, the system throughput is maximized, and the throughput between each user is fair.