Cargando…

A Model-Driven Channel Estimation Method for Millimeter-Wave Massive MIMO Systems

Aiming at the problem of low estimation accuracy under a low signal-to-noise ratio due to the failure to consider the “beam squint” effect in millimeter-wave broadband systems, this paper proposes a model-driven channel estimation method for millimeter-wave massive MIMO broadband systems. This metho...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Qingli, Li, Yangyang, Sun, Jiaxu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007568/
https://www.ncbi.nlm.nih.gov/pubmed/36904842
http://dx.doi.org/10.3390/s23052638
Descripción
Sumario:Aiming at the problem of low estimation accuracy under a low signal-to-noise ratio due to the failure to consider the “beam squint” effect in millimeter-wave broadband systems, this paper proposes a model-driven channel estimation method for millimeter-wave massive MIMO broadband systems. This method considers the “beam squint” effect and applies the iterative shrinkage threshold algorithm to the deep iterative network. First, the millimeter-wave channel matrix is transformed into a transform domain with sparse features through training data learning to obtain a sparse matrix. Secondly, a contraction threshold network based on an attention mechanism is proposed in the phase of beam domain denoising. The network selects a set of optimal thresholds according to feature adaptation, which can be applied to different signal-to-noise ratios to achieve a better denoising effect. Finally, the residual network and the shrinkage threshold network are jointly optimized to accelerate the convergence speed of the network. The simulation results show that the convergence speed is increased by 10% and the channel estimation accuracy is increased by 17.28% on average under different signal-to-noise ratios.