Cargando…
COVID-19 Detection Using Photoplethysmography and Neural Networks
The early identification of microvascular changes in patients with Coronavirus Disease 2019 (COVID-19) may offer an important clinical opportunity. This study aimed to define a method, based on deep learning approaches, for the identification of COVID-19 patients from the analysis of the raw PPG sig...
Autores principales: | Lombardi, Sara, Francia, Piergiorgio, Deodati, Rossella, Calamai, Italo, Luchini, Marco, Spina, Rosario, Bocchi, Leonardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007577/ https://www.ncbi.nlm.nih.gov/pubmed/36904763 http://dx.doi.org/10.3390/s23052561 |
Ejemplares similares
-
Classifying sepsis from photoplethysmography
por: Lombardi, Sara, et al.
Publicado: (2022) -
COVID-19 detection using a model of photoplethysmography (PPG) signals
por: Rossi, Eva, et al.
Publicado: (2022) -
Automatic COVID-19 severity assessment from HRV
por: Aliani, Cosimo, et al.
Publicado: (2023) -
Convolutional neural network based on photoplethysmography signals for sleep apnea syndrome detection
por: Jiang, Xinge, et al.
Publicado: (2023) -
Training Convolutional Neural Networks on Simulated Photoplethysmography Data: Application to Bradycardia and Tachycardia Detection
por: Sološenko , Andrius, et al.
Publicado: (2022)