Cargando…

Novel Mixed Matrix Membranes Based on Poly(vinylidene fluoride): Development, Characterization, Modeling

Membrane technology is an actively developing area of modern societies; with the help of high-performance membranes, it is possible to separate various mixtures for many industrial tasks. The objective of this study was to develop novel effective membranes based on poly(vinylidene fluoride) (PVDF) b...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuzminova, Anna, Dmitrenko, Mariia, Zolotarev, Andrey, Markelov, Denis, Komolkin, Andrei, Dubovenko, Roman, Selyutin, Artem, Wu, Jiangjiexing, Su, Rongxin, Penkova, Anastasia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007587/
https://www.ncbi.nlm.nih.gov/pubmed/36904461
http://dx.doi.org/10.3390/polym15051222
Descripción
Sumario:Membrane technology is an actively developing area of modern societies; with the help of high-performance membranes, it is possible to separate various mixtures for many industrial tasks. The objective of this study was to develop novel effective membranes based on poly(vinylidene fluoride) (PVDF) by its modification with various nanoparticles (TiO(2), Ag-TiO(2), GO-TiO(2), and MWCNT/TiO(2)). Two types of membranes have been developed: dense membranes for pervaporation and porous membranes for ultrafiltration. The optimal content of nanoparticles in the PVDF matrix was selected: 0.3 wt% for porous membranes and 0.5 wt% for dense ones. The structural and physicochemical properties of the developed membranes were studied using FTIR spectroscopy, thermogravimetric analysis, scanning electron and atomic force microscopies, and measuring of contact angles. In addition, the molecular dynamics simulation of PVDF and the TiO(2) system was applied. The transport properties and cleaning ability under ultraviolet irradiation of porous membranes were studied by ultrafiltration of a bovine serum albumin solution. The transport properties of dense membranes were tested in pervaporation separation of a water/isopropanol mixture. It was found that membranes with the optimal transport properties are as follows: the dense membrane modified with 0.5 wt% GO-TiO(2) and the porous membrane modified with 0.3 wt% MWCNT/TiO(2) and Ag-TiO(2).