Cargando…
Online Learning for Wearable EEG-Based Emotion Classification
Giving emotional intelligence to machines can facilitate the early detection and prediction of mental diseases and symptoms. Electroencephalography (EEG)-based emotion recognition is widely applied because it measures electrical correlates directly from the brain rather than indirect measurement of...
Autores principales: | Moontaha, Sidratul, Schumann, Franziska Elisabeth Friederike, Arnrich, Bert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007607/ https://www.ncbi.nlm.nih.gov/pubmed/36904590 http://dx.doi.org/10.3390/s23052387 |
Ejemplares similares
-
State Space Modeling of Event Count Time Series
por: Moontaha, Sidratul, et al.
Publicado: (2023) -
Food Choices after Cognitive Load: An Affective Computing Approach
por: Kappattanavar, Arpita Mallikarjuna, et al.
Publicado: (2023) -
Towards Measuring Stress with Smartphones and Wearable Devices During Workday and Sleep
por: Muaremi, Amir, et al.
Publicado: (2013) -
An Efficient Machine Learning-Based Emotional Valence Recognition Approach Towards Wearable EEG
por: Abdel-Hamid, Lamiaa
Publicado: (2023) -
A Wearable In-Ear EEG Device for Emotion Monitoring
por: Athavipach, Chanavit, et al.
Publicado: (2019)