Cargando…
Fiber Bundle Image Reconstruction Using Convolutional Neural Networks and Bundle Rotation in Endomicroscopy
Fiber-bundle endomicroscopy has several recognized drawbacks, the most prominent being the honeycomb effect. We developed a multi-frame super-resolution algorithm exploiting bundle rotation to extract features and reconstruct underlying tissue. Simulated data was used with rotated fiber-bundle masks...
Autores principales: | Eadie, Matthew, Liao, Jinpeng, Ageeli, Wael, Nabi, Ghulam, Krstajić, Nikola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007631/ https://www.ncbi.nlm.nih.gov/pubmed/36904673 http://dx.doi.org/10.3390/s23052469 |
Ejemplares similares
-
Fiber bundle shifting endomicroscopy for high-resolution imaging
por: Vyas, Khushi, et al.
Publicado: (2018) -
Honeycomb Artifact Removal Using Convolutional Neural Network for Fiber Bundle Imaging
por: Kim, Eunchan, et al.
Publicado: (2022) -
Line scanning, fiber bundle fluorescence HiLo endomicroscopy with confocal slit detection
por: Zhang, Haojie, et al.
Publicado: (2019) -
Automatic motion compensation for structured illumination endomicroscopy using a flexible fiber bundle
por: Thrapp, Andrew D., et al.
Publicado: (2020) -
Reduced motion artifacts and speed improvements in enhanced line-scanning fiber bundle endomicroscopy
por: Thrapp, Andrew D., et al.
Publicado: (2021)