Cargando…
A Novel Optimized Perturbation-Based Machine Learning for Preserving Privacy in Medical Data
In recent times, providing privacy to the medical dataset has been the biggest issue in medical applications. Since, in hospitals, the patient's data are stored in files, the files must be secured properly. Thus, different machine learning models were developed to overcome data privacy issues....
Autores principales: | Dansana, Jayanti, Kabat, Manas Ranjan, Pattnaik, Prasant Kumar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007660/ https://www.ncbi.nlm.nih.gov/pubmed/37206632 http://dx.doi.org/10.1007/s11277-023-10363-x |
Ejemplares similares
-
Preserving the Privacy of Healthcare Data over Social Networks Using Machine Learning
por: Veeramakali, T., et al.
Publicado: (2022) -
Splitting chemical structure data sets for federated privacy-preserving machine learning
por: Simm, Jaak, et al.
Publicado: (2021) -
Retracted: Preserving the Privacy of Healthcare Data over Social Networks Using Machine Learning
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
Privacy-Preserving Restricted Boltzmann Machine
por: Li, Yu, et al.
Publicado: (2014) -
Towards realistic privacy-preserving deep learning over encrypted medical data
por: Cabrero-Holgueras, José, et al.
Publicado: (2023)