Cargando…
Cognitive Video Surveillance Management in Hierarchical Edge Computing System with Long Short-Term Memory Model
Nowadays, deep learning (DL)-based video surveillance services are widely used in smart cities because of their ability to accurately identify and track objects, such as vehicles and pedestrians, in real time. This allows a more efficient traffic management and improved public safety. However, DL-ba...
Autores principales: | Ugli, Dilshod Bazarov Ravshan, Kim, Jingyeom, Mohammed, Alaelddin F. Y., Lee, Joohyung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007679/ https://www.ncbi.nlm.nih.gov/pubmed/36905075 http://dx.doi.org/10.3390/s23052869 |
Ejemplares similares
-
AdaMM: Adaptive Object Movement and Motion Tracking in Hierarchical Edge Computing System
por: Kim, Jingyeom, et al.
Publicado: (2021) -
Smart Video Surveillance System Based on Edge Computing
por: Cob-Parro, Antonio Carlos, et al.
Publicado: (2021) -
Smart Privacy Protection for Big Video Data Storage Based on Hierarchical Edge Computing
por: Xiao, Di, et al.
Publicado: (2020) -
Anomaly detection using edge computing in video surveillance system: review
por: Patrikar, Devashree R., et al.
Publicado: (2022) -
Deep-Reinforcement-Learning-Based IoT Sensor Data Cleaning Framework for Enhanced Data Analytics
por: Mohammed, Alaelddin F. Y., et al.
Publicado: (2023)