Cargando…

Integrative modelling of reported case numbers and seroprevalence reveals time-dependent test efficiency and infectious contacts

Mathematical models have been widely used during the ongoing SARS-CoV-2 pandemic for data interpretation, forecasting, and policy making. However, most models are based on officially reported case numbers, which depend on test availability and test strategies. The time dependence of these factors re...

Descripción completa

Detalles Bibliográficos
Autores principales: Contento, Lorenzo, Castelletti, Noemi, Raimúndez, Elba, Le Gleut, Ronan, Schälte, Yannik, Stapor, Paul, Hinske, Ludwig Christian, Hoelscher, Michael, Wieser, Andreas, Radon, Katja, Fuchs, Christiane, Hasenauer, Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10008049/
https://www.ncbi.nlm.nih.gov/pubmed/36931114
http://dx.doi.org/10.1016/j.epidem.2023.100681
Descripción
Sumario:Mathematical models have been widely used during the ongoing SARS-CoV-2 pandemic for data interpretation, forecasting, and policy making. However, most models are based on officially reported case numbers, which depend on test availability and test strategies. The time dependence of these factors renders interpretation difficult and might even result in estimation biases. Here, we present a computational modelling framework that allows for the integration of reported case numbers with seroprevalence estimates obtained from representative population cohorts. To account for the time dependence of infection and testing rates, we embed flexible splines in an epidemiological model. The parameters of these splines are estimated, along with the other parameters, from the available data using a Bayesian approach. The application of this approach to the official case numbers reported for Munich (Germany) and the seroprevalence reported by the prospective COVID-19 Cohort Munich (KoCo19) provides first estimates for the time dependence of the under-reporting factor. Furthermore, we estimate how the effectiveness of non-pharmaceutical interventions and of the testing strategy evolves over time. Overall, our results show that the integration of temporally highly resolved and representative data is beneficial for accurate epidemiological analyses.