Cargando…

Integrative modelling of reported case numbers and seroprevalence reveals time-dependent test efficiency and infectious contacts

Mathematical models have been widely used during the ongoing SARS-CoV-2 pandemic for data interpretation, forecasting, and policy making. However, most models are based on officially reported case numbers, which depend on test availability and test strategies. The time dependence of these factors re...

Descripción completa

Detalles Bibliográficos
Autores principales: Contento, Lorenzo, Castelletti, Noemi, Raimúndez, Elba, Le Gleut, Ronan, Schälte, Yannik, Stapor, Paul, Hinske, Ludwig Christian, Hoelscher, Michael, Wieser, Andreas, Radon, Katja, Fuchs, Christiane, Hasenauer, Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10008049/
https://www.ncbi.nlm.nih.gov/pubmed/36931114
http://dx.doi.org/10.1016/j.epidem.2023.100681
_version_ 1784905669894209536
author Contento, Lorenzo
Castelletti, Noemi
Raimúndez, Elba
Le Gleut, Ronan
Schälte, Yannik
Stapor, Paul
Hinske, Ludwig Christian
Hoelscher, Michael
Wieser, Andreas
Radon, Katja
Fuchs, Christiane
Hasenauer, Jan
author_facet Contento, Lorenzo
Castelletti, Noemi
Raimúndez, Elba
Le Gleut, Ronan
Schälte, Yannik
Stapor, Paul
Hinske, Ludwig Christian
Hoelscher, Michael
Wieser, Andreas
Radon, Katja
Fuchs, Christiane
Hasenauer, Jan
author_sort Contento, Lorenzo
collection PubMed
description Mathematical models have been widely used during the ongoing SARS-CoV-2 pandemic for data interpretation, forecasting, and policy making. However, most models are based on officially reported case numbers, which depend on test availability and test strategies. The time dependence of these factors renders interpretation difficult and might even result in estimation biases. Here, we present a computational modelling framework that allows for the integration of reported case numbers with seroprevalence estimates obtained from representative population cohorts. To account for the time dependence of infection and testing rates, we embed flexible splines in an epidemiological model. The parameters of these splines are estimated, along with the other parameters, from the available data using a Bayesian approach. The application of this approach to the official case numbers reported for Munich (Germany) and the seroprevalence reported by the prospective COVID-19 Cohort Munich (KoCo19) provides first estimates for the time dependence of the under-reporting factor. Furthermore, we estimate how the effectiveness of non-pharmaceutical interventions and of the testing strategy evolves over time. Overall, our results show that the integration of temporally highly resolved and representative data is beneficial for accurate epidemiological analyses.
format Online
Article
Text
id pubmed-10008049
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-100080492023-03-13 Integrative modelling of reported case numbers and seroprevalence reveals time-dependent test efficiency and infectious contacts Contento, Lorenzo Castelletti, Noemi Raimúndez, Elba Le Gleut, Ronan Schälte, Yannik Stapor, Paul Hinske, Ludwig Christian Hoelscher, Michael Wieser, Andreas Radon, Katja Fuchs, Christiane Hasenauer, Jan Epidemics Article Mathematical models have been widely used during the ongoing SARS-CoV-2 pandemic for data interpretation, forecasting, and policy making. However, most models are based on officially reported case numbers, which depend on test availability and test strategies. The time dependence of these factors renders interpretation difficult and might even result in estimation biases. Here, we present a computational modelling framework that allows for the integration of reported case numbers with seroprevalence estimates obtained from representative population cohorts. To account for the time dependence of infection and testing rates, we embed flexible splines in an epidemiological model. The parameters of these splines are estimated, along with the other parameters, from the available data using a Bayesian approach. The application of this approach to the official case numbers reported for Munich (Germany) and the seroprevalence reported by the prospective COVID-19 Cohort Munich (KoCo19) provides first estimates for the time dependence of the under-reporting factor. Furthermore, we estimate how the effectiveness of non-pharmaceutical interventions and of the testing strategy evolves over time. Overall, our results show that the integration of temporally highly resolved and representative data is beneficial for accurate epidemiological analyses. Elsevier 2023-06 /pmc/articles/PMC10008049/ /pubmed/36931114 http://dx.doi.org/10.1016/j.epidem.2023.100681 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Contento, Lorenzo
Castelletti, Noemi
Raimúndez, Elba
Le Gleut, Ronan
Schälte, Yannik
Stapor, Paul
Hinske, Ludwig Christian
Hoelscher, Michael
Wieser, Andreas
Radon, Katja
Fuchs, Christiane
Hasenauer, Jan
Integrative modelling of reported case numbers and seroprevalence reveals time-dependent test efficiency and infectious contacts
title Integrative modelling of reported case numbers and seroprevalence reveals time-dependent test efficiency and infectious contacts
title_full Integrative modelling of reported case numbers and seroprevalence reveals time-dependent test efficiency and infectious contacts
title_fullStr Integrative modelling of reported case numbers and seroprevalence reveals time-dependent test efficiency and infectious contacts
title_full_unstemmed Integrative modelling of reported case numbers and seroprevalence reveals time-dependent test efficiency and infectious contacts
title_short Integrative modelling of reported case numbers and seroprevalence reveals time-dependent test efficiency and infectious contacts
title_sort integrative modelling of reported case numbers and seroprevalence reveals time-dependent test efficiency and infectious contacts
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10008049/
https://www.ncbi.nlm.nih.gov/pubmed/36931114
http://dx.doi.org/10.1016/j.epidem.2023.100681
work_keys_str_mv AT contentolorenzo integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts
AT castellettinoemi integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts
AT raimundezelba integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts
AT legleutronan integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts
AT schalteyannik integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts
AT staporpaul integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts
AT hinskeludwigchristian integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts
AT hoelschermichael integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts
AT wieserandreas integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts
AT radonkatja integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts
AT fuchschristiane integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts
AT hasenauerjan integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts
AT integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts