Cargando…
Integrative modelling of reported case numbers and seroprevalence reveals time-dependent test efficiency and infectious contacts
Mathematical models have been widely used during the ongoing SARS-CoV-2 pandemic for data interpretation, forecasting, and policy making. However, most models are based on officially reported case numbers, which depend on test availability and test strategies. The time dependence of these factors re...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10008049/ https://www.ncbi.nlm.nih.gov/pubmed/36931114 http://dx.doi.org/10.1016/j.epidem.2023.100681 |
_version_ | 1784905669894209536 |
---|---|
author | Contento, Lorenzo Castelletti, Noemi Raimúndez, Elba Le Gleut, Ronan Schälte, Yannik Stapor, Paul Hinske, Ludwig Christian Hoelscher, Michael Wieser, Andreas Radon, Katja Fuchs, Christiane Hasenauer, Jan |
author_facet | Contento, Lorenzo Castelletti, Noemi Raimúndez, Elba Le Gleut, Ronan Schälte, Yannik Stapor, Paul Hinske, Ludwig Christian Hoelscher, Michael Wieser, Andreas Radon, Katja Fuchs, Christiane Hasenauer, Jan |
author_sort | Contento, Lorenzo |
collection | PubMed |
description | Mathematical models have been widely used during the ongoing SARS-CoV-2 pandemic for data interpretation, forecasting, and policy making. However, most models are based on officially reported case numbers, which depend on test availability and test strategies. The time dependence of these factors renders interpretation difficult and might even result in estimation biases. Here, we present a computational modelling framework that allows for the integration of reported case numbers with seroprevalence estimates obtained from representative population cohorts. To account for the time dependence of infection and testing rates, we embed flexible splines in an epidemiological model. The parameters of these splines are estimated, along with the other parameters, from the available data using a Bayesian approach. The application of this approach to the official case numbers reported for Munich (Germany) and the seroprevalence reported by the prospective COVID-19 Cohort Munich (KoCo19) provides first estimates for the time dependence of the under-reporting factor. Furthermore, we estimate how the effectiveness of non-pharmaceutical interventions and of the testing strategy evolves over time. Overall, our results show that the integration of temporally highly resolved and representative data is beneficial for accurate epidemiological analyses. |
format | Online Article Text |
id | pubmed-10008049 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-100080492023-03-13 Integrative modelling of reported case numbers and seroprevalence reveals time-dependent test efficiency and infectious contacts Contento, Lorenzo Castelletti, Noemi Raimúndez, Elba Le Gleut, Ronan Schälte, Yannik Stapor, Paul Hinske, Ludwig Christian Hoelscher, Michael Wieser, Andreas Radon, Katja Fuchs, Christiane Hasenauer, Jan Epidemics Article Mathematical models have been widely used during the ongoing SARS-CoV-2 pandemic for data interpretation, forecasting, and policy making. However, most models are based on officially reported case numbers, which depend on test availability and test strategies. The time dependence of these factors renders interpretation difficult and might even result in estimation biases. Here, we present a computational modelling framework that allows for the integration of reported case numbers with seroprevalence estimates obtained from representative population cohorts. To account for the time dependence of infection and testing rates, we embed flexible splines in an epidemiological model. The parameters of these splines are estimated, along with the other parameters, from the available data using a Bayesian approach. The application of this approach to the official case numbers reported for Munich (Germany) and the seroprevalence reported by the prospective COVID-19 Cohort Munich (KoCo19) provides first estimates for the time dependence of the under-reporting factor. Furthermore, we estimate how the effectiveness of non-pharmaceutical interventions and of the testing strategy evolves over time. Overall, our results show that the integration of temporally highly resolved and representative data is beneficial for accurate epidemiological analyses. Elsevier 2023-06 /pmc/articles/PMC10008049/ /pubmed/36931114 http://dx.doi.org/10.1016/j.epidem.2023.100681 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Contento, Lorenzo Castelletti, Noemi Raimúndez, Elba Le Gleut, Ronan Schälte, Yannik Stapor, Paul Hinske, Ludwig Christian Hoelscher, Michael Wieser, Andreas Radon, Katja Fuchs, Christiane Hasenauer, Jan Integrative modelling of reported case numbers and seroprevalence reveals time-dependent test efficiency and infectious contacts |
title | Integrative modelling of reported case numbers and seroprevalence reveals time-dependent test efficiency and infectious contacts |
title_full | Integrative modelling of reported case numbers and seroprevalence reveals time-dependent test efficiency and infectious contacts |
title_fullStr | Integrative modelling of reported case numbers and seroprevalence reveals time-dependent test efficiency and infectious contacts |
title_full_unstemmed | Integrative modelling of reported case numbers and seroprevalence reveals time-dependent test efficiency and infectious contacts |
title_short | Integrative modelling of reported case numbers and seroprevalence reveals time-dependent test efficiency and infectious contacts |
title_sort | integrative modelling of reported case numbers and seroprevalence reveals time-dependent test efficiency and infectious contacts |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10008049/ https://www.ncbi.nlm.nih.gov/pubmed/36931114 http://dx.doi.org/10.1016/j.epidem.2023.100681 |
work_keys_str_mv | AT contentolorenzo integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts AT castellettinoemi integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts AT raimundezelba integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts AT legleutronan integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts AT schalteyannik integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts AT staporpaul integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts AT hinskeludwigchristian integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts AT hoelschermichael integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts AT wieserandreas integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts AT radonkatja integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts AT fuchschristiane integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts AT hasenauerjan integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts AT integrativemodellingofreportedcasenumbersandseroprevalencerevealstimedependenttestefficiencyandinfectiouscontacts |