Cargando…

A cybergenetic framework for engineering intein-mediated integral feedback control systems

The ability of biological systems to tightly regulate targeted variables, despite external and internal disturbances, is known as Robust Perfect Adaptation (RPA). Achieved frequently through biomolecular integral feedback controllers at the cellular level, RPA has important implications for biotechn...

Descripción completa

Detalles Bibliográficos
Autores principales: Anastassov, Stanislav, Filo, Maurice, Chang, Ching-Hsiang, Khammash, Mustafa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10008564/
https://www.ncbi.nlm.nih.gov/pubmed/36906662
http://dx.doi.org/10.1038/s41467-023-36863-9
Descripción
Sumario:The ability of biological systems to tightly regulate targeted variables, despite external and internal disturbances, is known as Robust Perfect Adaptation (RPA). Achieved frequently through biomolecular integral feedback controllers at the cellular level, RPA has important implications for biotechnology and its various applications. In this study, we identify inteins as a versatile class of genetic components suitable for implementing these controllers and present a systematic approach for their design. We develop a theoretical foundation for screening intein-based RPA-achieving controllers and a simplified approach for modeling them. We then genetically engineer and test intein-based controllers using commonly used transcription factors in mammalian cells and demonstrate their exceptional adaptation properties over a wide dynamic range. The small size, flexibility, and applicability of inteins across life forms allow us to create a diversity of genetic RPA-achieving integral feedback control systems that can be used in various applications, including metabolic engineering and cell-based therapy.