Cargando…
Novel architecture for gated recurrent unit autoencoder trained on time series from electronic health records enables detection of ICU patient subgroups
Electronic health records (EHRs) are used in hospitals to store diagnoses, clinician notes, examinations, lab results, and interventions for each patient. Grouping patients into distinct subsets, for example, via clustering, may enable the discovery of unknown disease patterns or comorbidities, whic...
Autores principales: | Merkelbach, Kilian, Schaper, Steffen, Diedrich, Christian, Fritsch, Sebastian Johannes, Schuppert, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10008580/ https://www.ncbi.nlm.nih.gov/pubmed/36906642 http://dx.doi.org/10.1038/s41598-023-30986-1 |
Ejemplares similares
-
Deep Multivariate Time Series Embedding Clustering via Attentive-Gated Autoencoder
por: Ienco, Dino, et al.
Publicado: (2020) -
A shared synapse architecture for efficient FPGA implementation of autoencoders
por: Suzuki, Akihiro, et al.
Publicado: (2018) -
6GCVAE: Gated Convolutional Variational Autoencoder for IPv6 Target Generation
por: Cui, Tianyu, et al.
Publicado: (2020) -
Synthetic electronic health records generated with variational graph autoencoders
por: Nikolentzos, Giannis, et al.
Publicado: (2023) -
Identifying prognostic subgroups of luminal-A breast cancer using deep autoencoders and gene expressions
por: Wang, Seunghyun, et al.
Publicado: (2023)