Cargando…
Interpretable and context-free deconvolution of multi-scale whole transcriptomic data with UniCell deconvolve
We introduce UniCell: Deconvolve Base (UCDBase), a pre-trained, interpretable, deep learning model to deconvolve cell type fractions and predict cell identity across Spatial, bulk-RNA-Seq, and scRNA-Seq datasets without contextualized reference data. UCD is trained on 10 million pseudo-mixtures from...
Autores principales: | Charytonowicz, Daniel, Brody, Rachel, Sebra, Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10008582/ https://www.ncbi.nlm.nih.gov/pubmed/36906603 http://dx.doi.org/10.1038/s41467-023-36961-8 |
Ejemplares similares
-
Evaluation of the UniCel™ DxI 800 Immunoassay Analyzer in Measuring Five Tumor Markers
por: Park, Younhee, et al.
Publicado: (2012) -
Initial performance evaluation of the UniCel® DxH 800 Coulter® cellular analysis system
por: HEDLEY, B D, et al.
Publicado: (2011) -
Incidental Identification of Plasmodium vivax During Routine Complete Blood Count Analysis Using the UniCel DxH 800
por: Shin, Soyoung, et al.
Publicado: (2018) -
stVAE deconvolves cell-type composition in large-scale cellular resolution spatial transcriptomics
por: Li, Chen, et al.
Publicado: (2023) -
Digitally deconvolving the tumor microenvironment
por: Aran, Dvir, et al.
Publicado: (2016)