Cargando…
Improving the robustness and stability of a machine learning model for breast cancer prognosis through the use of multi-modal classifiers
Breast cancer is a deadly disease with a high mortality rate among PAN cancers. The advancements in biomedical information retrieval techniques have been beneficial in developing early prognosis and diagnosis systems for cancer patients. These systems provide the oncologist with plenty of informatio...
Autores principales: | Arya, Nikhilanand, Saha, Sriparna, Mathur, Archana, Saha, Snehanshu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10008603/ https://www.ncbi.nlm.nih.gov/pubmed/36906618 http://dx.doi.org/10.1038/s41598-023-30143-8 |
Ejemplares similares
-
Deviation-support based fuzzy ensemble of multi-modal deep learning classifiers for breast cancer prognosis prediction
por: Arya, Nikhilanand, et al.
Publicado: (2023) -
Breast cancer survival prognosis using the graph convolutional network with Choquet fuzzy integral
por: Palmal, Susmita, et al.
Publicado: (2023) -
Towards sentiment aided dialogue policy learning for multi-intent conversations using hierarchical reinforcement learning
por: Saha, Tulika, et al.
Publicado: (2020) -
Evolution of novel activation functions in neural network training for astronomy data: habitability classification of exoplanets
por: Saha, Snehanshu, et al.
Publicado: (2020) -
Framework for Testing Robustness of Machine Learning-Based Classifiers
por: Chuah, Joshua, et al.
Publicado: (2022)