Cargando…

Pan-Arctic marine biodiversity and species co-occurrence patterns under recent climate

The Arctic region is experiencing drastic climatic changes bringing about potential ecological shifts. Here, we explored marine biodiversity and potential species associations across eight Arctic marine areas between 2000 and 2019. We compiled species occurrences for a subset of 69 marine taxa (i.e....

Descripción completa

Detalles Bibliográficos
Autores principales: Alabia, Irene D., García Molinos, Jorge, Hirata, Takafumi, Mueter, Franz J., David, Carmen L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10008629/
https://www.ncbi.nlm.nih.gov/pubmed/36906705
http://dx.doi.org/10.1038/s41598-023-30943-y
Descripción
Sumario:The Arctic region is experiencing drastic climatic changes bringing about potential ecological shifts. Here, we explored marine biodiversity and potential species associations across eight Arctic marine areas between 2000 and 2019. We compiled species occurrences for a subset of 69 marine taxa (i.e., 26 apex predators and 43 mesopredators) and environmental factors to predict taxon-specific distributions using a multi-model ensemble approach. Arctic-wide temporal trends of species richness increased in the last 20 years and highlighted potential emerging areas of species accrual due to climate-driven species redistribution. Further, regional species associations were dominated by positive co-occurrences among species pairs with high frequencies in the Pacific and Atlantic Arctic areas. Comparative analyses of species richness, community composition, and co-occurrence between high and low summer sea ice concentrations revealed contrasting impacts of and detected areas vulnerable to sea ice changes. In particular, low (high) summer sea ice generally resulted in species gains (loss) in the inflow and loss (gains) in the outflow shelves, accompanied by substantial changes in community composition and therefore potential species associations. Overall, the recent changes in biodiversity and species co-occurrences in the Arctic were driven by pervasive poleward range shifts, especially for wide-ranging apex predators. Our findings highlight the varying regional impacts of warming and sea ice loss on Arctic marine communities and provide important insights into the vulnerability of Arctic marine areas to climate change.