Cargando…

Room temperature nondestructive encapsulation via self-crosslinked fluorosilicone polymer enables damp heat-stable sustainable perovskite solar cells

Encapsulation engineering is an effective strategy to improve the stability of perovskite solar cells. However, current encapsulation materials are not suitable for lead-based devices because of their complex encapsulation processes, poor thermal management, and inefficient lead leakage suppression....

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Tong, Yang, Jiabao, Cao, Qi, Pu, Xingyu, Li, Yuke, Chen, Hui, Zhao, Junsong, Zhang, Yixin, Chen, Xingyuan, Li, Xuanhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10008636/
https://www.ncbi.nlm.nih.gov/pubmed/36906625
http://dx.doi.org/10.1038/s41467-023-36918-x
_version_ 1784905799150075904
author Wang, Tong
Yang, Jiabao
Cao, Qi
Pu, Xingyu
Li, Yuke
Chen, Hui
Zhao, Junsong
Zhang, Yixin
Chen, Xingyuan
Li, Xuanhua
author_facet Wang, Tong
Yang, Jiabao
Cao, Qi
Pu, Xingyu
Li, Yuke
Chen, Hui
Zhao, Junsong
Zhang, Yixin
Chen, Xingyuan
Li, Xuanhua
author_sort Wang, Tong
collection PubMed
description Encapsulation engineering is an effective strategy to improve the stability of perovskite solar cells. However, current encapsulation materials are not suitable for lead-based devices because of their complex encapsulation processes, poor thermal management, and inefficient lead leakage suppression. In this work, we design a self-crosslinked fluorosilicone polymer gel, achieving nondestructive encapsulation at room temperature. Moreover, the proposed encapsulation strategy effectively promotes heat transfer and mitigates the potential impact of heat accumulation. As a result, the encapsulated devices maintain 98% of the normalized power conversion efficiency after 1000 h in the damp heat test and retain 95% of the normalized efficiency after 220 cycles in the thermal cycling test, satisfying the requirements of the International Electrotechnical Commission 61215 standard. The encapsulated devices also exhibit excellent lead leakage inhibition rates, 99% in the rain test and 98% in the immersion test, owing to excellent glass protection and strong coordination interaction. Our strategy provides a universal and integrated solution for achieving efficient, stable, and sustainable perovskite photovoltaics.
format Online
Article
Text
id pubmed-10008636
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-100086362023-03-13 Room temperature nondestructive encapsulation via self-crosslinked fluorosilicone polymer enables damp heat-stable sustainable perovskite solar cells Wang, Tong Yang, Jiabao Cao, Qi Pu, Xingyu Li, Yuke Chen, Hui Zhao, Junsong Zhang, Yixin Chen, Xingyuan Li, Xuanhua Nat Commun Article Encapsulation engineering is an effective strategy to improve the stability of perovskite solar cells. However, current encapsulation materials are not suitable for lead-based devices because of their complex encapsulation processes, poor thermal management, and inefficient lead leakage suppression. In this work, we design a self-crosslinked fluorosilicone polymer gel, achieving nondestructive encapsulation at room temperature. Moreover, the proposed encapsulation strategy effectively promotes heat transfer and mitigates the potential impact of heat accumulation. As a result, the encapsulated devices maintain 98% of the normalized power conversion efficiency after 1000 h in the damp heat test and retain 95% of the normalized efficiency after 220 cycles in the thermal cycling test, satisfying the requirements of the International Electrotechnical Commission 61215 standard. The encapsulated devices also exhibit excellent lead leakage inhibition rates, 99% in the rain test and 98% in the immersion test, owing to excellent glass protection and strong coordination interaction. Our strategy provides a universal and integrated solution for achieving efficient, stable, and sustainable perovskite photovoltaics. Nature Publishing Group UK 2023-03-11 /pmc/articles/PMC10008636/ /pubmed/36906625 http://dx.doi.org/10.1038/s41467-023-36918-x Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Wang, Tong
Yang, Jiabao
Cao, Qi
Pu, Xingyu
Li, Yuke
Chen, Hui
Zhao, Junsong
Zhang, Yixin
Chen, Xingyuan
Li, Xuanhua
Room temperature nondestructive encapsulation via self-crosslinked fluorosilicone polymer enables damp heat-stable sustainable perovskite solar cells
title Room temperature nondestructive encapsulation via self-crosslinked fluorosilicone polymer enables damp heat-stable sustainable perovskite solar cells
title_full Room temperature nondestructive encapsulation via self-crosslinked fluorosilicone polymer enables damp heat-stable sustainable perovskite solar cells
title_fullStr Room temperature nondestructive encapsulation via self-crosslinked fluorosilicone polymer enables damp heat-stable sustainable perovskite solar cells
title_full_unstemmed Room temperature nondestructive encapsulation via self-crosslinked fluorosilicone polymer enables damp heat-stable sustainable perovskite solar cells
title_short Room temperature nondestructive encapsulation via self-crosslinked fluorosilicone polymer enables damp heat-stable sustainable perovskite solar cells
title_sort room temperature nondestructive encapsulation via self-crosslinked fluorosilicone polymer enables damp heat-stable sustainable perovskite solar cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10008636/
https://www.ncbi.nlm.nih.gov/pubmed/36906625
http://dx.doi.org/10.1038/s41467-023-36918-x
work_keys_str_mv AT wangtong roomtemperaturenondestructiveencapsulationviaselfcrosslinkedfluorosiliconepolymerenablesdampheatstablesustainableperovskitesolarcells
AT yangjiabao roomtemperaturenondestructiveencapsulationviaselfcrosslinkedfluorosiliconepolymerenablesdampheatstablesustainableperovskitesolarcells
AT caoqi roomtemperaturenondestructiveencapsulationviaselfcrosslinkedfluorosiliconepolymerenablesdampheatstablesustainableperovskitesolarcells
AT puxingyu roomtemperaturenondestructiveencapsulationviaselfcrosslinkedfluorosiliconepolymerenablesdampheatstablesustainableperovskitesolarcells
AT liyuke roomtemperaturenondestructiveencapsulationviaselfcrosslinkedfluorosiliconepolymerenablesdampheatstablesustainableperovskitesolarcells
AT chenhui roomtemperaturenondestructiveencapsulationviaselfcrosslinkedfluorosiliconepolymerenablesdampheatstablesustainableperovskitesolarcells
AT zhaojunsong roomtemperaturenondestructiveencapsulationviaselfcrosslinkedfluorosiliconepolymerenablesdampheatstablesustainableperovskitesolarcells
AT zhangyixin roomtemperaturenondestructiveencapsulationviaselfcrosslinkedfluorosiliconepolymerenablesdampheatstablesustainableperovskitesolarcells
AT chenxingyuan roomtemperaturenondestructiveencapsulationviaselfcrosslinkedfluorosiliconepolymerenablesdampheatstablesustainableperovskitesolarcells
AT lixuanhua roomtemperaturenondestructiveencapsulationviaselfcrosslinkedfluorosiliconepolymerenablesdampheatstablesustainableperovskitesolarcells