Cargando…

Emergent chirality in a polar meron to skyrmion phase transition

Polar skyrmions are predicted to emerge from the interplay of elastic, electrostatic and gradient energies, in contrast to the key role of the anti-symmetric Dzyalozhinskii-Moriya interaction in magnetic skyrmions. Here, we explore the reversible transition from a skyrmion state (topological charge...

Descripción completa

Detalles Bibliográficos
Autores principales: Shao, Yu-Tsun, Das, Sujit, Hong, Zijian, Xu, Ruijuan, Chandrika, Swathi, Gómez-Ortiz, Fernando, García-Fernández, Pablo, Chen, Long-Qing, Hwang, Harold Y., Junquera, Javier, Martin, Lane W., Ramesh, Ramamoorthy, Muller, David A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10008831/
https://www.ncbi.nlm.nih.gov/pubmed/36907894
http://dx.doi.org/10.1038/s41467-023-36950-x
Descripción
Sumario:Polar skyrmions are predicted to emerge from the interplay of elastic, electrostatic and gradient energies, in contrast to the key role of the anti-symmetric Dzyalozhinskii-Moriya interaction in magnetic skyrmions. Here, we explore the reversible transition from a skyrmion state (topological charge of −1) to a two-dimensional, tetratic lattice of merons (with topological charge of −1/2) upon varying the temperature and elastic boundary conditions in [(PbTiO(3))(16)/(SrTiO(3))(16)](8) membranes. This topological phase transition is accompanied by a change in chirality, from zero-net chirality (in meronic phase) to net-handedness (in skyrmionic phase). We show how scanning electron diffraction provides a robust measure of the local polarization simultaneously with the strain state at sub-nm resolution, while also directly mapping the chirality of each skyrmion. Using this, we demonstrate strain as a crucial order parameter to drive isotropic-to-anisotropic structural transitions of chiral polar skyrmions to non-chiral merons, validated with X-ray reciprocal space mapping and phase-field simulations.