Cargando…

Emergent chirality in a polar meron to skyrmion phase transition

Polar skyrmions are predicted to emerge from the interplay of elastic, electrostatic and gradient energies, in contrast to the key role of the anti-symmetric Dzyalozhinskii-Moriya interaction in magnetic skyrmions. Here, we explore the reversible transition from a skyrmion state (topological charge...

Descripción completa

Detalles Bibliográficos
Autores principales: Shao, Yu-Tsun, Das, Sujit, Hong, Zijian, Xu, Ruijuan, Chandrika, Swathi, Gómez-Ortiz, Fernando, García-Fernández, Pablo, Chen, Long-Qing, Hwang, Harold Y., Junquera, Javier, Martin, Lane W., Ramesh, Ramamoorthy, Muller, David A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10008831/
https://www.ncbi.nlm.nih.gov/pubmed/36907894
http://dx.doi.org/10.1038/s41467-023-36950-x
_version_ 1784905845285322752
author Shao, Yu-Tsun
Das, Sujit
Hong, Zijian
Xu, Ruijuan
Chandrika, Swathi
Gómez-Ortiz, Fernando
García-Fernández, Pablo
Chen, Long-Qing
Hwang, Harold Y.
Junquera, Javier
Martin, Lane W.
Ramesh, Ramamoorthy
Muller, David A.
author_facet Shao, Yu-Tsun
Das, Sujit
Hong, Zijian
Xu, Ruijuan
Chandrika, Swathi
Gómez-Ortiz, Fernando
García-Fernández, Pablo
Chen, Long-Qing
Hwang, Harold Y.
Junquera, Javier
Martin, Lane W.
Ramesh, Ramamoorthy
Muller, David A.
author_sort Shao, Yu-Tsun
collection PubMed
description Polar skyrmions are predicted to emerge from the interplay of elastic, electrostatic and gradient energies, in contrast to the key role of the anti-symmetric Dzyalozhinskii-Moriya interaction in magnetic skyrmions. Here, we explore the reversible transition from a skyrmion state (topological charge of −1) to a two-dimensional, tetratic lattice of merons (with topological charge of −1/2) upon varying the temperature and elastic boundary conditions in [(PbTiO(3))(16)/(SrTiO(3))(16)](8) membranes. This topological phase transition is accompanied by a change in chirality, from zero-net chirality (in meronic phase) to net-handedness (in skyrmionic phase). We show how scanning electron diffraction provides a robust measure of the local polarization simultaneously with the strain state at sub-nm resolution, while also directly mapping the chirality of each skyrmion. Using this, we demonstrate strain as a crucial order parameter to drive isotropic-to-anisotropic structural transitions of chiral polar skyrmions to non-chiral merons, validated with X-ray reciprocal space mapping and phase-field simulations.
format Online
Article
Text
id pubmed-10008831
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-100088312023-03-14 Emergent chirality in a polar meron to skyrmion phase transition Shao, Yu-Tsun Das, Sujit Hong, Zijian Xu, Ruijuan Chandrika, Swathi Gómez-Ortiz, Fernando García-Fernández, Pablo Chen, Long-Qing Hwang, Harold Y. Junquera, Javier Martin, Lane W. Ramesh, Ramamoorthy Muller, David A. Nat Commun Article Polar skyrmions are predicted to emerge from the interplay of elastic, electrostatic and gradient energies, in contrast to the key role of the anti-symmetric Dzyalozhinskii-Moriya interaction in magnetic skyrmions. Here, we explore the reversible transition from a skyrmion state (topological charge of −1) to a two-dimensional, tetratic lattice of merons (with topological charge of −1/2) upon varying the temperature and elastic boundary conditions in [(PbTiO(3))(16)/(SrTiO(3))(16)](8) membranes. This topological phase transition is accompanied by a change in chirality, from zero-net chirality (in meronic phase) to net-handedness (in skyrmionic phase). We show how scanning electron diffraction provides a robust measure of the local polarization simultaneously with the strain state at sub-nm resolution, while also directly mapping the chirality of each skyrmion. Using this, we demonstrate strain as a crucial order parameter to drive isotropic-to-anisotropic structural transitions of chiral polar skyrmions to non-chiral merons, validated with X-ray reciprocal space mapping and phase-field simulations. Nature Publishing Group UK 2023-03-13 /pmc/articles/PMC10008831/ /pubmed/36907894 http://dx.doi.org/10.1038/s41467-023-36950-x Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Shao, Yu-Tsun
Das, Sujit
Hong, Zijian
Xu, Ruijuan
Chandrika, Swathi
Gómez-Ortiz, Fernando
García-Fernández, Pablo
Chen, Long-Qing
Hwang, Harold Y.
Junquera, Javier
Martin, Lane W.
Ramesh, Ramamoorthy
Muller, David A.
Emergent chirality in a polar meron to skyrmion phase transition
title Emergent chirality in a polar meron to skyrmion phase transition
title_full Emergent chirality in a polar meron to skyrmion phase transition
title_fullStr Emergent chirality in a polar meron to skyrmion phase transition
title_full_unstemmed Emergent chirality in a polar meron to skyrmion phase transition
title_short Emergent chirality in a polar meron to skyrmion phase transition
title_sort emergent chirality in a polar meron to skyrmion phase transition
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10008831/
https://www.ncbi.nlm.nih.gov/pubmed/36907894
http://dx.doi.org/10.1038/s41467-023-36950-x
work_keys_str_mv AT shaoyutsun emergentchiralityinapolarmerontoskyrmionphasetransition
AT dassujit emergentchiralityinapolarmerontoskyrmionphasetransition
AT hongzijian emergentchiralityinapolarmerontoskyrmionphasetransition
AT xuruijuan emergentchiralityinapolarmerontoskyrmionphasetransition
AT chandrikaswathi emergentchiralityinapolarmerontoskyrmionphasetransition
AT gomezortizfernando emergentchiralityinapolarmerontoskyrmionphasetransition
AT garciafernandezpablo emergentchiralityinapolarmerontoskyrmionphasetransition
AT chenlongqing emergentchiralityinapolarmerontoskyrmionphasetransition
AT hwangharoldy emergentchiralityinapolarmerontoskyrmionphasetransition
AT junquerajavier emergentchiralityinapolarmerontoskyrmionphasetransition
AT martinlanew emergentchiralityinapolarmerontoskyrmionphasetransition
AT rameshramamoorthy emergentchiralityinapolarmerontoskyrmionphasetransition
AT mullerdavida emergentchiralityinapolarmerontoskyrmionphasetransition