Cargando…
Cathelicidin promotes liver repair after acetaminophen-induced liver injury in mice
BACKGROUND & AIMS: Acetaminophen (APAP)-induced acute liver injury (AILI) is a leading cause of acute liver failure (ALF). N-acetylcysteine (NAC) is only effective within 24 h after APAP intoxication, raising an urgent need for alternative approaches to treat this disease. This study aimed to te...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009536/ https://www.ncbi.nlm.nih.gov/pubmed/36923240 http://dx.doi.org/10.1016/j.jhepr.2023.100687 |
_version_ | 1784906007465426944 |
---|---|
author | Zhai, Tingting Zhang, Jingjing Zhang, Jie Liu, Bilian Zhou, Zhiguang Liu, Feng Wu, Yan |
author_facet | Zhai, Tingting Zhang, Jingjing Zhang, Jie Liu, Bilian Zhou, Zhiguang Liu, Feng Wu, Yan |
author_sort | Zhai, Tingting |
collection | PubMed |
description | BACKGROUND & AIMS: Acetaminophen (APAP)-induced acute liver injury (AILI) is a leading cause of acute liver failure (ALF). N-acetylcysteine (NAC) is only effective within 24 h after APAP intoxication, raising an urgent need for alternative approaches to treat this disease. This study aimed to test whether cathelicidin (Camp), which is a protective factor in chronic liver diseases, protects mice against APAP-induced liver injury and ALF. METHODS: A clinically relevant AILI model and an APAP-induced ALF model were generated in mice. Genetic and pharmacological approaches were used to interfere with the levels of cathelicidin in vivo. RESULTS: An increase in hepatic pro-CRAMP/CRAMP (the precursor and mature forms of mouse cathelicidin) was observed in APAP-intoxicated mice. Upregulated cathelicidin was derived from liver-infiltrating neutrophils. Compared with wild-type littermates, Camp knockout had no effect on hepatic injury but dampened hepatic repair in AILI and reduced survival in APAP-induced ALF. CRAMP administration reversed impaired liver recovery observed in APAP-challenged Camp knockout mice. Delayed CRAMP, CRAMP(1-39) (the extended form of CRAMP), or LL-37 (the mature form of human cathelicidin) treatment exhibited a therapeutic benefit for AILI. Co-treatment of cathelicidin and NAC in AILI displayed a stronger hepatoprotective effect than NAC alone. A similar additive effect of CRAMP(1-39)/LL-37 and NAC was observed in APAP-induced ALF. The pro-reparative role of cathelicidin in the APAP-damaged liver was attributed to an accelerated resolution of inflammation at the onset of liver repair, possibly through enhanced neutrophil phagocytosis of necrotic cell debris in an autocrine manner. CONCLUSIONS: Cathelicidin reduces APAP-induced liver injury and ALF in mice by promoting liver recovery via facilitating inflammation resolution, suggesting a therapeutic potential for late-presenting patients with AILI with or without ALF. IMPACT AND IMPLICATIONS: Acetaminophen-induced acute liver injury is a leading cause of acute liver failure. The efficacy of N-acetylcysteine, the only clinically approved drug against acetaminophen-induced acute liver injury, is significantly reduced for late-presenting patients. We found that cathelicidin exhibits a great therapeutic potential in mice with acetaminophen-induced liver injury or acute liver failure, which makes up for the limitation of N-acetylcysteine therapy by specifically promoting liver repair after acetaminophen intoxication. The pro-reparative role of cathelicidin, as a key effector molecule of neutrophils, in the APAP-injured liver is attributed to an accelerated resolution of inflammation at the onset of liver repair, possibly through enhanced phagocytic function of neutrophils in an autocrine manner. |
format | Online Article Text |
id | pubmed-10009536 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-100095362023-03-14 Cathelicidin promotes liver repair after acetaminophen-induced liver injury in mice Zhai, Tingting Zhang, Jingjing Zhang, Jie Liu, Bilian Zhou, Zhiguang Liu, Feng Wu, Yan JHEP Rep Research Article BACKGROUND & AIMS: Acetaminophen (APAP)-induced acute liver injury (AILI) is a leading cause of acute liver failure (ALF). N-acetylcysteine (NAC) is only effective within 24 h after APAP intoxication, raising an urgent need for alternative approaches to treat this disease. This study aimed to test whether cathelicidin (Camp), which is a protective factor in chronic liver diseases, protects mice against APAP-induced liver injury and ALF. METHODS: A clinically relevant AILI model and an APAP-induced ALF model were generated in mice. Genetic and pharmacological approaches were used to interfere with the levels of cathelicidin in vivo. RESULTS: An increase in hepatic pro-CRAMP/CRAMP (the precursor and mature forms of mouse cathelicidin) was observed in APAP-intoxicated mice. Upregulated cathelicidin was derived from liver-infiltrating neutrophils. Compared with wild-type littermates, Camp knockout had no effect on hepatic injury but dampened hepatic repair in AILI and reduced survival in APAP-induced ALF. CRAMP administration reversed impaired liver recovery observed in APAP-challenged Camp knockout mice. Delayed CRAMP, CRAMP(1-39) (the extended form of CRAMP), or LL-37 (the mature form of human cathelicidin) treatment exhibited a therapeutic benefit for AILI. Co-treatment of cathelicidin and NAC in AILI displayed a stronger hepatoprotective effect than NAC alone. A similar additive effect of CRAMP(1-39)/LL-37 and NAC was observed in APAP-induced ALF. The pro-reparative role of cathelicidin in the APAP-damaged liver was attributed to an accelerated resolution of inflammation at the onset of liver repair, possibly through enhanced neutrophil phagocytosis of necrotic cell debris in an autocrine manner. CONCLUSIONS: Cathelicidin reduces APAP-induced liver injury and ALF in mice by promoting liver recovery via facilitating inflammation resolution, suggesting a therapeutic potential for late-presenting patients with AILI with or without ALF. IMPACT AND IMPLICATIONS: Acetaminophen-induced acute liver injury is a leading cause of acute liver failure. The efficacy of N-acetylcysteine, the only clinically approved drug against acetaminophen-induced acute liver injury, is significantly reduced for late-presenting patients. We found that cathelicidin exhibits a great therapeutic potential in mice with acetaminophen-induced liver injury or acute liver failure, which makes up for the limitation of N-acetylcysteine therapy by specifically promoting liver repair after acetaminophen intoxication. The pro-reparative role of cathelicidin, as a key effector molecule of neutrophils, in the APAP-injured liver is attributed to an accelerated resolution of inflammation at the onset of liver repair, possibly through enhanced phagocytic function of neutrophils in an autocrine manner. Elsevier 2023-01-31 /pmc/articles/PMC10009536/ /pubmed/36923240 http://dx.doi.org/10.1016/j.jhepr.2023.100687 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Zhai, Tingting Zhang, Jingjing Zhang, Jie Liu, Bilian Zhou, Zhiguang Liu, Feng Wu, Yan Cathelicidin promotes liver repair after acetaminophen-induced liver injury in mice |
title | Cathelicidin promotes liver repair after acetaminophen-induced liver injury in mice |
title_full | Cathelicidin promotes liver repair after acetaminophen-induced liver injury in mice |
title_fullStr | Cathelicidin promotes liver repair after acetaminophen-induced liver injury in mice |
title_full_unstemmed | Cathelicidin promotes liver repair after acetaminophen-induced liver injury in mice |
title_short | Cathelicidin promotes liver repair after acetaminophen-induced liver injury in mice |
title_sort | cathelicidin promotes liver repair after acetaminophen-induced liver injury in mice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009536/ https://www.ncbi.nlm.nih.gov/pubmed/36923240 http://dx.doi.org/10.1016/j.jhepr.2023.100687 |
work_keys_str_mv | AT zhaitingting cathelicidinpromotesliverrepairafteracetaminopheninducedliverinjuryinmice AT zhangjingjing cathelicidinpromotesliverrepairafteracetaminopheninducedliverinjuryinmice AT zhangjie cathelicidinpromotesliverrepairafteracetaminopheninducedliverinjuryinmice AT liubilian cathelicidinpromotesliverrepairafteracetaminopheninducedliverinjuryinmice AT zhouzhiguang cathelicidinpromotesliverrepairafteracetaminopheninducedliverinjuryinmice AT liufeng cathelicidinpromotesliverrepairafteracetaminopheninducedliverinjuryinmice AT wuyan cathelicidinpromotesliverrepairafteracetaminopheninducedliverinjuryinmice |