Cargando…
Surface-based tracking for short association fibre tractography
It is estimated that in the human brain, short association fibres (SAF) represent more than half of the total white matter volume and their involvement has been implicated in a range of neurological and psychiatric conditions. This population of fibres, however, remains relatively understudied in th...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009610/ https://www.ncbi.nlm.nih.gov/pubmed/35809886 http://dx.doi.org/10.1016/j.neuroimage.2022.119423 |
_version_ | 1784906020589404160 |
---|---|
author | Shastin, Dmitri Genc, Sila Parker, Greg D. Koller, Kristin Tax, Chantal M.W. Evans, John Hamandi, Khalid Gray, William P. Jones, Derek K. Chamberland, Maxime |
author_facet | Shastin, Dmitri Genc, Sila Parker, Greg D. Koller, Kristin Tax, Chantal M.W. Evans, John Hamandi, Khalid Gray, William P. Jones, Derek K. Chamberland, Maxime |
author_sort | Shastin, Dmitri |
collection | PubMed |
description | It is estimated that in the human brain, short association fibres (SAF) represent more than half of the total white matter volume and their involvement has been implicated in a range of neurological and psychiatric conditions. This population of fibres, however, remains relatively understudied in the neuroimaging literature. Some of the challenges pertinent to the mapping of SAF include their variable anatomical course and proximity to the cortical mantle, leading to partial volume effects and potentially affecting streamline trajectory estimation. This work considers the impact of seeding and filtering strategies and choice of scanner, acquisition, data resampling to propose a whole-brain, surface-based short (≤30–40 mm) SAF tractography approach. The framework is shown to produce longer streamlines with a predilection for connecting gyri as well as high cortical coverage. We further demonstrate that certain areas of subcortical white matter become disproportionally underrepresented in diffusion-weighted MRI data with lower angular and spatial resolution and weaker diffusion weighting; however, collecting data with stronger gradients than are usually available clinically has minimal impact, making our framework translatable to data collected on commonly available hardware. Finally, the tractograms are examined using voxel- and surface-based measures of consistency, demonstrating moderate reliability, low repeatability and high between-subject variability, urging caution when streamline count-based analyses of SAF are performed. |
format | Online Article Text |
id | pubmed-10009610 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Academic Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-100096102023-03-14 Surface-based tracking for short association fibre tractography Shastin, Dmitri Genc, Sila Parker, Greg D. Koller, Kristin Tax, Chantal M.W. Evans, John Hamandi, Khalid Gray, William P. Jones, Derek K. Chamberland, Maxime Neuroimage Article It is estimated that in the human brain, short association fibres (SAF) represent more than half of the total white matter volume and their involvement has been implicated in a range of neurological and psychiatric conditions. This population of fibres, however, remains relatively understudied in the neuroimaging literature. Some of the challenges pertinent to the mapping of SAF include their variable anatomical course and proximity to the cortical mantle, leading to partial volume effects and potentially affecting streamline trajectory estimation. This work considers the impact of seeding and filtering strategies and choice of scanner, acquisition, data resampling to propose a whole-brain, surface-based short (≤30–40 mm) SAF tractography approach. The framework is shown to produce longer streamlines with a predilection for connecting gyri as well as high cortical coverage. We further demonstrate that certain areas of subcortical white matter become disproportionally underrepresented in diffusion-weighted MRI data with lower angular and spatial resolution and weaker diffusion weighting; however, collecting data with stronger gradients than are usually available clinically has minimal impact, making our framework translatable to data collected on commonly available hardware. Finally, the tractograms are examined using voxel- and surface-based measures of consistency, demonstrating moderate reliability, low repeatability and high between-subject variability, urging caution when streamline count-based analyses of SAF are performed. Academic Press 2022-10-15 /pmc/articles/PMC10009610/ /pubmed/35809886 http://dx.doi.org/10.1016/j.neuroimage.2022.119423 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Shastin, Dmitri Genc, Sila Parker, Greg D. Koller, Kristin Tax, Chantal M.W. Evans, John Hamandi, Khalid Gray, William P. Jones, Derek K. Chamberland, Maxime Surface-based tracking for short association fibre tractography |
title | Surface-based tracking for short association fibre tractography |
title_full | Surface-based tracking for short association fibre tractography |
title_fullStr | Surface-based tracking for short association fibre tractography |
title_full_unstemmed | Surface-based tracking for short association fibre tractography |
title_short | Surface-based tracking for short association fibre tractography |
title_sort | surface-based tracking for short association fibre tractography |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009610/ https://www.ncbi.nlm.nih.gov/pubmed/35809886 http://dx.doi.org/10.1016/j.neuroimage.2022.119423 |
work_keys_str_mv | AT shastindmitri surfacebasedtrackingforshortassociationfibretractography AT gencsila surfacebasedtrackingforshortassociationfibretractography AT parkergregd surfacebasedtrackingforshortassociationfibretractography AT kollerkristin surfacebasedtrackingforshortassociationfibretractography AT taxchantalmw surfacebasedtrackingforshortassociationfibretractography AT evansjohn surfacebasedtrackingforshortassociationfibretractography AT hamandikhalid surfacebasedtrackingforshortassociationfibretractography AT graywilliamp surfacebasedtrackingforshortassociationfibretractography AT jonesderekk surfacebasedtrackingforshortassociationfibretractography AT chamberlandmaxime surfacebasedtrackingforshortassociationfibretractography |