Cargando…
Clinical phenotyping of plasma thrombospondin-2 reveals relationship to right ventricular structure and function in pulmonary hypertension
BACKGROUND: Converging evidence from proteogenomic analyses prioritises thrombospondin-2 (TSP2) as a potential biomarker for idiopathic or heritable pulmonary arterial hypertension (PAH). We aimed to assess TSP2 levels in different forms of pulmonary hypertension (PH) and to define its clinical phen...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
European Respiratory Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009705/ https://www.ncbi.nlm.nih.gov/pubmed/36923572 http://dx.doi.org/10.1183/23120541.00528-2022 |
_version_ | 1784906043344551936 |
---|---|
author | Dittrich, Anna M. Mienert, Julia Pott, Julian Engels, Lena Sinning, Christoph Hennigs, Jan K. Klose, Hans Harbaum, Lars |
author_facet | Dittrich, Anna M. Mienert, Julia Pott, Julian Engels, Lena Sinning, Christoph Hennigs, Jan K. Klose, Hans Harbaum, Lars |
author_sort | Dittrich, Anna M. |
collection | PubMed |
description | BACKGROUND: Converging evidence from proteogenomic analyses prioritises thrombospondin-2 (TSP2) as a potential biomarker for idiopathic or heritable pulmonary arterial hypertension (PAH). We aimed to assess TSP2 levels in different forms of pulmonary hypertension (PH) and to define its clinical phenotype. METHODS: Absolute concentrations of TSP2 were quantified in plasma samples from a prospective single-centre cohort study including 196 patients with different forms of PH and 16 disease controls (suspected PH, but normal resting pulmonary haemodynamics). In an unbiased approach, TSP2 levels were related to 152 clinical variables. RESULTS: Concentrations of TSP2 were increased in patients with PH versus disease controls (p<0.001 for group comparison). The discriminatory ability of TSP2 levels to distinguish between patients and controls was superior to that of N-terminal pro-brain natriuretic peptide (p=0.0023 for comparison of areas under the curve). Elevation of TSP2 levels was consistently found in subcategories of PAH, in PH due to lung disease and due to left heart disease. Phenotypically, TSP2 levels were robustly related to echocardiographic markers that indicate the right ventricular (RV) response to chronically increased afterload with increased levels in patients with impaired systolic function and ventriculoarterial uncoupling. Focusing on PAH, increased TSP2 levels were able to distinguish between adaptive and maladaptive RV phenotypes (area under the curve 0.87, 95% CI 0.76–0.98). INTERPRETATION: The study indicates that plasma TSP2 levels inform on the presence of PH and associate with clinically relevant RV phenotypes in the setting of increased afterload, which may provide insight into processes of RV adaptability. |
format | Online Article Text |
id | pubmed-10009705 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | European Respiratory Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-100097052023-03-14 Clinical phenotyping of plasma thrombospondin-2 reveals relationship to right ventricular structure and function in pulmonary hypertension Dittrich, Anna M. Mienert, Julia Pott, Julian Engels, Lena Sinning, Christoph Hennigs, Jan K. Klose, Hans Harbaum, Lars ERJ Open Res Original Research Articles BACKGROUND: Converging evidence from proteogenomic analyses prioritises thrombospondin-2 (TSP2) as a potential biomarker for idiopathic or heritable pulmonary arterial hypertension (PAH). We aimed to assess TSP2 levels in different forms of pulmonary hypertension (PH) and to define its clinical phenotype. METHODS: Absolute concentrations of TSP2 were quantified in plasma samples from a prospective single-centre cohort study including 196 patients with different forms of PH and 16 disease controls (suspected PH, but normal resting pulmonary haemodynamics). In an unbiased approach, TSP2 levels were related to 152 clinical variables. RESULTS: Concentrations of TSP2 were increased in patients with PH versus disease controls (p<0.001 for group comparison). The discriminatory ability of TSP2 levels to distinguish between patients and controls was superior to that of N-terminal pro-brain natriuretic peptide (p=0.0023 for comparison of areas under the curve). Elevation of TSP2 levels was consistently found in subcategories of PAH, in PH due to lung disease and due to left heart disease. Phenotypically, TSP2 levels were robustly related to echocardiographic markers that indicate the right ventricular (RV) response to chronically increased afterload with increased levels in patients with impaired systolic function and ventriculoarterial uncoupling. Focusing on PAH, increased TSP2 levels were able to distinguish between adaptive and maladaptive RV phenotypes (area under the curve 0.87, 95% CI 0.76–0.98). INTERPRETATION: The study indicates that plasma TSP2 levels inform on the presence of PH and associate with clinically relevant RV phenotypes in the setting of increased afterload, which may provide insight into processes of RV adaptability. European Respiratory Society 2023-03-13 /pmc/articles/PMC10009705/ /pubmed/36923572 http://dx.doi.org/10.1183/23120541.00528-2022 Text en Copyright ©The authors 2023 https://creativecommons.org/licenses/by-nc/4.0/This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org (mailto:permissions@ersnet.org) |
spellingShingle | Original Research Articles Dittrich, Anna M. Mienert, Julia Pott, Julian Engels, Lena Sinning, Christoph Hennigs, Jan K. Klose, Hans Harbaum, Lars Clinical phenotyping of plasma thrombospondin-2 reveals relationship to right ventricular structure and function in pulmonary hypertension |
title | Clinical phenotyping of plasma thrombospondin-2 reveals relationship to right ventricular structure and function in pulmonary hypertension |
title_full | Clinical phenotyping of plasma thrombospondin-2 reveals relationship to right ventricular structure and function in pulmonary hypertension |
title_fullStr | Clinical phenotyping of plasma thrombospondin-2 reveals relationship to right ventricular structure and function in pulmonary hypertension |
title_full_unstemmed | Clinical phenotyping of plasma thrombospondin-2 reveals relationship to right ventricular structure and function in pulmonary hypertension |
title_short | Clinical phenotyping of plasma thrombospondin-2 reveals relationship to right ventricular structure and function in pulmonary hypertension |
title_sort | clinical phenotyping of plasma thrombospondin-2 reveals relationship to right ventricular structure and function in pulmonary hypertension |
topic | Original Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009705/ https://www.ncbi.nlm.nih.gov/pubmed/36923572 http://dx.doi.org/10.1183/23120541.00528-2022 |
work_keys_str_mv | AT dittrichannam clinicalphenotypingofplasmathrombospondin2revealsrelationshiptorightventricularstructureandfunctioninpulmonaryhypertension AT mienertjulia clinicalphenotypingofplasmathrombospondin2revealsrelationshiptorightventricularstructureandfunctioninpulmonaryhypertension AT pottjulian clinicalphenotypingofplasmathrombospondin2revealsrelationshiptorightventricularstructureandfunctioninpulmonaryhypertension AT engelslena clinicalphenotypingofplasmathrombospondin2revealsrelationshiptorightventricularstructureandfunctioninpulmonaryhypertension AT sinningchristoph clinicalphenotypingofplasmathrombospondin2revealsrelationshiptorightventricularstructureandfunctioninpulmonaryhypertension AT hennigsjank clinicalphenotypingofplasmathrombospondin2revealsrelationshiptorightventricularstructureandfunctioninpulmonaryhypertension AT klosehans clinicalphenotypingofplasmathrombospondin2revealsrelationshiptorightventricularstructureandfunctioninpulmonaryhypertension AT harbaumlars clinicalphenotypingofplasmathrombospondin2revealsrelationshiptorightventricularstructureandfunctioninpulmonaryhypertension |